General info

Introduction
o Lecturer: Mitri Kitti (mitri.kitti@gmail.com)

o Web-page: www.mitrikitti. /mathcamp.html
o Material
e handouts by Juuso ®limeki on course webpage
o Book: Simon and BlumeMathematics for Economists
relevant chapters indicated in slides (SB: XX)
o exercises and slides can be found in the course website

Contents of the course,
logic, sets, functions
SB: Al, 135

e Basics: logic, sets, functions
o Elementary analysis

e Unconstrained optimization

e topology: metrics, open and closed sets

e normed vector spaces e rst and second order optimality conditions
o continuity of functions, Weierstrass theorem o envelope theorem
e Linear algebra o Convex analysis
o linear functions e convex sets and concave functions, quasiconcavity
o rank of a matrix, determinant e concave and quasiconcave optimization

o eigenvalues and eigenvectors

Lo : : o Nonlinear programming
o application: linear dynamic systems

o rst order necessary conditions
o Multivariate calculus o comparative statics
o di erential and partial derivatives e su cient optimality conditions
o Taylor series, linearizations and log-linearizations
o implicit function theorem
o application: stability of nonlinear dynamic systems

Contents and schedule Logic

N A proposition is a statement which can be declared true or
false without ambiguity

N A propositional (or sentential) function is a statement which
becomes a proposition when we replace the variable with a
speci ed value

e Introduction to Programming
e Programming with Matlab
e basics, linear algebra

« conditional statements and loops e \2+2=4"is a proposition whilex < 2"is a propositional
e writing functions function
e Basics on Dynare e Propositional functions lead to propositions when the variables

are quanti ed

o for x (in the domain of discourse) is denoted &8s
o there is anx is denoted a9, if there is uniqueness then we
denote9!

Logic Methods of proof

o Direct proof
o showing that conclusion) follows from hypothesisH )
o Proof by contrapositive

@ Connectives (for constructing new propositions)
e and (*), or (_), negation ( )

e Implication\) " o to showH ) C itisshownthat: C): H
e we writeA') B if propositionB is true when propositiorA is e Proof by contradiction
true, we also say thaf is su cient condition for B andB is e assume (H ) C)andshowthat: (H) C)~Hisa
necessary condition foh contradiction

e ifA) BandB) A wewriteA, B
e Note: : (8x; P(x)) ,9 x;: P(x)

Proof by construction
Proof by decomposition



Sets

o Naive set theory: set is a collection of objects
e Membership relatiorx 2 A (elementx belongs to sefA)

e setinclusionB A ifx2 B ) x 2 A, proper inclusion
B A:B AandB 6 A

e The usual binary operations

unionA[ B

intersectionA\ B

complementA°®, the set di erence (complement oA relative
to B) of B andA isB nA (elements ofB that are not
elements ofA)

Cartesian producA B

o De Morgan lawgA\ B)¢ = A°[ B¢ and(A[ B)® = A\ B®

Real coordinate spaces

Sets

o Examples

o real numbersR, integersZ, positive integerd\, rational
numbersQ
a real coordinate set®": n-times Cartesian product oR

o Power setP (A) or 2*: the set of all subsets oh
e Arbitrary unions and complements, index det

o union overl: i, A
e intersection ovel : ,, A;

Real coordinate spaces

e The setsR", n 1 are called real coordinate spaces

o We write an elemenk = (X1;:::;%,) 2 R" with ¥2R
X1

i =1;:::;n also as a column array (vector) = E‘) : g
Xn

P
o Inner product of two elements ®R": x y=xTy= " ;xy;
(herex™ denotes the transpose of)

e X is orthogonal toy if x y =0 p
o note: cosf x;y) = x y=(kxkkyk), wherekxk = ~ X x

e Least upper bound of a set

e an elementu 2 R is a least upper bound dé if x u for all
X 2 S and for anyv 2 R such thatx v forallx 2 S it holds
thatu v, we denoteu =sup S

Functions

N Functionf : X 7!'Y is a rule that assigns an element
f(x) 2 Y to each elemenk 2 X

o formallyf is a subset oK Y such that
8Xx2X9%2Y :(x;y)2f and
(x;y)2f,8 z6y:(x;z)2f

o graph of a function iff (x;f(x)) 2 X Y :x2 Xg

e note: for eachx there is uniquey 2 X, if there were several
y's corresponding tox 2 X, f would be a correspondence (set
valued mapping), i.e.f : X 7' P (Y)

o often the notions of map and mapping are used as synonyms
of function

e In ma and suprema

o greatest lower boundnf S respectively asup
e axiom: any; & S R with an upper bound has a least upper

bound
o Notations
e zero vector0 = (0;:::;0)
e positive vectorsx 0, X 08i =1;:::;n
o strictly positive vectorsx 0, x; > 08i =1;:::;n
e positive and strictly positive orthant®} = fx 2 R" : x 0g

andR}, =fx2R":x 0Og

Functions: domain and range

e X is the domain of the function an& is the range

e note: in these notes the domain is often assumed toRje
although we could in most cases assume the domain to be a
(open) subset oR"

e ForA X the image ofA isf(A)

e Pre-image (or inverse image) & 2 Y is
f YB)=fx2X:9y2B; f(x)=yg

N If f(X) =Y thenf is surjection (onto)

N If for eachy 2 Y, f 1(y) consists of at most one element of
X, thenf is injective (one-to-one) mapping of to Y

Economic models

Bijections

N If f is both surjective and injective, then it is a bijection
o f is a bijection if and only if ! is a function
e Examples:

e identity function idx) = x is a bijection
o exponential function is not bijection betweeR and itself but
it is a bijection betweerR and R+

If X andY are nite sets, then there is a bijection betweefi
andY if and only if the number of elements in the two sets is
the same

o this can be taken as the de nition for the same number of
elements (cardinality of sets)

e Purposes of economic modeling

e explaining how economies work and how economic agents
interact

e forming an abstraction of observed data

e means of selection of data

o other uses: forecasting, policy analysis

e Simpli cation in modeling
o choice of variables and relationships relevant for the analysi

e Endogenous and exogenous variables

e when an economic model involves functions in which some of
the variables are not a ected by the choice of economic
agents, these variables are called exogenous variables

e exogenous variables are xed parameters in the model

e respectively, endogenous variables are those that are a ected
by economic agents, they are determined by the model



Economic models

e Example: model of a consumer

o elements: choice of a consumption bundle? R} over budget
setfx2R":p x 1;x Ogwherep Oandl >0

o utility function u : R} 7! R (more generally preference
relation)

o variablesp and| are exogenous anxl is endogenous



Elements of Analysis

Some topology, continuity,
Weierstrass theorem
SB: 10{12, 29, 30.1

Examples of metrics

Example 1: any seX can be made into a metric space by
de ning d(x;x) =0 andd(x;y) =1 whenx 6 y
Example 2:X = R", d(p;q) = k=1 0Pk Q%

Example 3:X = the set of real valued bounded functions

de ned on a setS, d(f; g) = sup,,sif(X) g(x)j.

Example 4:X = the set of in nitely lengthy sequences of real
numbers,d(p; ) = supy jpx G, P = (P1;P2; 13,
q=(0p;:)

Vector spaces

A setX is a vector space if the sum of two vectors and the
product of a scalar and a vector can be de ned

o the sum\+"should satisfy the usual properties of a sum:
associativity (x + y) + z = x + (y + z)), commutativity
(x +y = y + x), there are identity (zero) and inverse
(-vector) elements

e the scalar product satis es distributivityd(x + y) = ax + ay,
(a+ b)x = ax + bx) and compatibility @(bx) = ( ab)x)
conditions and there is an identity elementx = x)

o Example 1: real coordinate spa&

e Example 2:X functions onS, de ne sum and scalar product
pointwise

Open sets

N X metric spacey -neighborhood ok,
Ne(x) = fy 2 X :d(x;y) < rg

N Interior point, X is an interior point ofX if there isr > 0 such
that Ny (x) X

o we denote the interior of a set as i8)

S X is an open set if every point @& is an interior point, i.e.,
S = int(S)

A setX is said to be a metric space if for any two pointsand q
of X there is associated a real numbe(p; g), called the distanc
from p to g, such that:

()) d(p;g) > 0if p& g; d(p;p) =0,

(i) d(p;qg) = d(a;p).
(i) d(p;g) d(p;r)+ d(r;q), foranyr 2 X.

e any function with these three properties is called a distance
function or a metric

Examples of metrics

e Why would an economist be interested in metric spaces in
examples 3 and 4?

e In some settings the choice variable of a decision maker can be
a function or an in nite sequence
e Application for example 3S =[0; 1] with g 2 S representing
the the quality of a product, functiorf (q) = price of quality
q2 S product
e Application for example 4: in nitely many periods, in each
periods there is price for a produck = sequences of prices

Vector spaces

Normed vector spacX , normk k (function that measures the
length)

e kxk 0Oandkxk =0 if and only ifx = 0
e kaxk = jajkxk for all scalarsa
o kx + yk k xk+ kyk (triangle inequality)

a9p—
o Example:X = R" with kxk = k=1 X2 (Euclidean norm),
noted(x;y) = kx yk is a distance

1. X is open as well as

2. any union of open sets is open

3. intersection of nitely many open sets is open

? these three properties are the de nition of a topology!
e Open sets iR"

o Norm equivalence theorem: all norms RT' de ne the same
topology (the set of open sets)

e example 1: strictly positive orthanR?,

o example 2: open half spacég 2 R" :p x < ag



Closed sets Sequences and convergence

A setS is closed ifS® (complement) is open

o A sequence’;x?%;:::, wherexk 2 X, k=1;2::: (X isa

e Equivalent de nition metric space), is said to converge 102 X if for every" > 0,
o closure ofS: x 2 S if for all " > 0 we haveN-(x)\ S6 ; there is an integeN such thatk N impliesd(x*;x) <"
e Sis closed if (and only ifs = S o notation for a sequencéxg
o Examples o formally a sequence i is a function on the set
o positive orthantR? N=f1;2;:::9,if X : N 7! S'is a sequence theX (n) = x"
o hyperplanesx 2 R" : p x = ag and closed half-spaces o ifAkag converges toc we denotex* ! x (ask!1 )or
fx2R":p xQag k|!'1mxk:X
o level curves of a continuous functiofix 2 R" : f(x)= g e X is called the limit point of the sequence

o (lower and upper) level sets of a continuous function:
fx2R":f(x)Q g
N Boundary of a set =@, x 2 @ if N-(x)\ S6 ; and
N-(x)\ S¢6 ;
o remark: in{S)= Sn@

Compact sets Compact sets iiR"
A subsetS ?(f a metric spaceX is said to be compact _if ey Every compact set of a normed vector space is bounded and c’osed
sequencé x“g S has a convergent subsequence with a limit

pointin S

A setS is closed if and only ifx*g S, xK! x implies that
x2S

e S X is bounded if there i81 > 0 such thatkxk M for
allx2 S

? For R" the converse of the previous theorem is also true, i.e.,
every bounded and closed set is compact, i®., R" is

e given an in nite sequencék; g of integers with
ki < ko < ks::: we say thatfxk g is a subsequence dk*g

° compactngss can be QE ned fqr topologlca] spaces (without compact if and only if it is bounded and closed
metric): S is compact if for ag)ltrary collection of open sets . . .
fU g o X such tgatS U thereis a nite set e ?is equivalent to Bolzano-Weierstrass theorem: every
2A

=1l
| A such thats U bounded sequence IR" has a convergent subsequence

Continuous functions Lipschitz continuity

Let X andY be metric spaced, is continuous atp if for every

"> QOthereis a > 0 such that e X andY metric spacesf : X 7! Y is Lipschitz continuous if
dx (x;p) < =) dy (f(x);f(p)) <" the isL O (Lipschitz constant) such that
dy (F(x1);f(x?)  Ldx (x%;x?)
o If f is continuous at any 2 X thenf is continuous ornX e If L 2 (0; 1) the function is called a contraction
e Equivalent de nitions of continuity o f is locally Lipschitz orX if any x 2 X has an open

o f (V) is open (closed) for every open (closed) 8et2 X neighborhood in whicti is Lipschitz
° kIlilm f(x¥) = f(p) for any sequencéx¥g such that

= lim xk
p ki1

Weierstrass theorem

Continuous function over a compact set attains its extrema
(minimum and maximum)

e S compact,f continuous onS, then there isx such that
f(x) =inf x25 f(x) (and the same for supremum)



Introduction

] e Some economic models have a linear structure
Linear algebra e Nonlinear models can be approximated by linear models

e System of linear equations, general form

Matrices, determinant, inversions
! ! aj1xXy + agpXo + i+ agn X =
SB: 6{9, 26, 27 11X + a12X2 1n Xn by
: Pt , Ax=b
Ami1X1 + @maXo + i+ @mnXn = by
e @ ,b,i=1;::;m,j =1;:::;n, are parameters (exogenous
variables) andx;;:::; %, are (endogenous) variables

Example: two products Example: two products

o DemandQ¢ = KiP,"P,"?Y 1,i=1;2 e By taking a logarithm of supply, demand, and the equilibrium

) ) . - condition we get a linear system
o P; price of producti, Y income

e j elasticity of demand of product for pricej d - | Lo D e
o i“ income Zlasticity of prodzct Pree) 4 = kroaptogptoay
¢ = mi+ ip;
e SupplyQf = M;P;",i=1;2 ¢ = o
e ;i is the price elasticity of supply
o EquilibriumQ® = Q8, i =1;2 o after some algebraic manipulation this results to a system of
) _ 4 s s B the form
e Notationsq® =In Q°%, ¢ =In Q%, py =In P,y =InY, ap a2 P _ b

mi =In Mi, ki =In K; a1 ax P2 b

Vector spaces Linearly dependent vectors

W V is a subspace of (vector space) if {)

v;w2W ) v+w2W and (i) v2W forall scalars and 1;::1; o not all equal to zero such thatavi+  + v"=0
v2W
o If vectors are not linearly dependent they are linearly
o LetV be a vector space and!;:::;v" 2V and 1;:::; g independent
scalars. The expressiopvt+  + ,v" is called a linear o If vectorsvl;:::;v" are linearly independent and
combination ofv®;:::;v" spar(vl;:::;v") = V then they form a basis o¥/
o the set of all linear combination of?;:::;v", denoted by o Ifv2V is written asv = qvi+ + av", then
spar(v';:::;v"), this set is a subspace af ( 1;:::; n) are the coordinates of w.r.t. the given basis

Vector and a ne spaces Matrices

e If V has a basis consisting of elements we say that the N m n (real) matrix A, we denoteA 2 R™ ", is an array
dimension ofV isn 0 1
. ai; A2 ain
e Any two basis of a vector space have the same number of a1 A aon
elements A= % . % ;
e Example: coordinate vectors, i =1;:::;n of R" ’
dm1 am2 @mn
wherea; 2 R, i =1;::5;m,j=1;::0;m
Translationx®+ V of a vector spacé/ is called an a ne space o notation: Aj = (@ 1;:::;an) (ith row), Al = (agj;:::;am)
(set) (j th column)

o Transpose of a matrbAT is de ned by (AT);j = Aj
o dimension of an a ne space®+ V is the dimension of the e Special matrices: square, identity matrix), symmetric,
vector spacev diagonal, upper (lower) triangular



Invertible matrices Positive and negative de nite matrices

e Multiplication of matrices,A 2 R"™ M, B 2 R™ S, the
product AB is de ned as

x
(AB); = aibg = A Bl A symmetric matrixA 2 R" " is positive semide nite i Ax
k=1 for all x 2 R", and positive de nite ifx" Ax > 0 for allx 6 0

e matrix A is negative (semi)de nite if A is positive

A 2 R" " js invertible (nonsingular) if there i& 12 R" " such (semi)de nite
that AA 1= A A= | e if a matrix is neither neg. or pos. sem. def., then it is
inde nite

e Some results
o Vectorsvl;:::;vk 2 R with Al = Vi, j =1:::;k are linearly
dependent if and only if the systedx = 0 has a nonzero
solutionx 2 R¥
o A2 R" " is nonsingular if and only if its columns (or rows)
are linearly independent

Linear equations Linear equations

e Linearsystemof equationsAx = b

hereA2 R™ " andx 2 R", b2 R™ e rank(A) = dimension of the image space
if there are more equations than unknowns,> n, the system fy2 R™M:y = Ax;x 2 R"g, whereA 2 R™ "
is said to be over-determined

e note: x Ax is aquadratic formand we also talk about
de niteness of quadratic forms

note: AX = b. A+ 4 A"=b o column rank = dimension of spgi®;:::; A")
° . =0, 1 n = . i
o system is said to be homogeneousi 0 e row rank = dimension of spaff\1;:::;Am)
@ Solutions of linear systems e rank = column rank = row rank
o system is solvable if and onlytifcan be expressed as a linear o rank is at mostmin(m; n), if rank(A) = min( m;n) we say
combination of columns oA that A has full rank
o in other words, system is solvable if and only if o if rank(A) = m it has full row rank, if rankA) = n it has full

b2 spar(Al;:::;A") = R(A) (range ofA) column rank
o the set of solutions oAx = 0 is called the null space ¢k and
it is denoted byN (A)

Linear mappings Linear mappings

If F:R" 7! R™ is a linear function, then there is a matrix
A functionF :V 7! W is linear ifF( x+ y)= FX)+ F(y) A 2 R™ " such thatF (x) = Ax for allx 2 R"

forallx;y2V and; 2R

Theorem (Fundamental theorem of linear algebra)

o If afunction_is gf the formF (x) = L(x) +_ b, where _ dim(V) = dim(ker(F))+ dim(Im(F))
L:V 7! W is linear andb 2 W, then F is an a ne function
e Example: rotation and scaling o for A2 R™ M we haven = dim(N (A)) + rank(A)
e Kernel ofF = ker(F)=fv2V :F(v)= 0g
e Image ofF =
Im(F)= fw2 W :9v2V; such thatw = F(v)g If x° is a solution ofAx = b then any other solutiorx can can be
o when considering a matrix as a linear function, then kernel written asx = x%+ w wherew 2 N (A)

coincides with the null space and image with the range
o in other words the set of solutions is the a ne set® + N (A)

Linear equations: number of solutions Determinants

e Geometric idea: scale factor for measure

o Determining the size of the solution set féxx = b with e n =2, determinant tells how the area is scaled under the linear
A2RM N transformation,det(A) = aj;a; azax

if rank(A) = m, then Ax = b has a solution for alb 2 R™
, A (orf(x)= Ax) is surjective if and only iA has full row rank

De nition (Laplace's formula)

e if N = m, A is surjective if and only if it is injective o let Aj denote the matrix obtained fromA 2 R™ " by
o if rank(A) < m, then Ax = b has a solution only fob 2 R (A) deletingi th row andjth column
o if rank(A)_: n, the_n N (A) = f0g and Ax = b has at most o minor M;j = det(A;)
one solution solution for alb 2 R™ S
. Ais injective if and only iN (A) = f0g o cofactorCyy =( 1)/ Mj
A is injective if and only if it has full column rank o for any row () det(A) = j”_ &y G

if rank(A) < n, then if Ax = b has any solution at all, the set
of solutions is an a ne subspace of dimension rank(A)
pos. (neg.) def. matrix is nonsingular

o for any column [) det(A) = [, a; Cj

A is nonsingular if and only iflet(A) 6 0




Cramer's rule

e Method for solvingAx = b

o let B; denote the matrix that is obtained from\ by replacing
ith column with b

o assumingdet(A) 6 0 the system has a unique solution that is
given byx; = det( B;j)=det(A)

o Example IS-LM analysis

e national income model, net national produdt, interest rate
r, marginal propensity to save, marginal e ciency of capital
a, investmentl = 1° ar, money balances needed,
government spendin@, money supplyMg

sY+ar = 1°+G
mY hr = Ms M°

Determinants and de niteness of a matrix

Example: 1S-LM analysis

e Endogenous variableg andr can be solved by using
Cramer's rule

1°+G  a
v = Ms MO h _ (°+Gh+am MO
s a sh+ am
m h
s 19+G
o m Ms M® 1%+ G)m sM M9
N s a - sh+ am
m h

Matrix inversion

o kth order leading principal minor oA 2 R" " is the
determinant ofk  k matrix obtained fromA by deleting the
lastn  k columns anch  k rows

e Symmetric matrixA 2 R" " is pos. def if and only if all it®
leading principal minors are strictly positive

o Symmetric matrixA 2 R" " is neg. def if and only if all it®
leading principal minors alternate in sign such theth order
leading principal minor has the same sign (asl)¥

Gaussian elimination

e Idea, lete denoteith coordinate vector

) Al=(XaXe %)
o Elementary row operations

o interchage two rows of a matrix
e change a row by adding to it a multiple of another row
o multiply each element in a row by the same nonzero number

e Form an augmented matrifAjl ]

e when solvingAx = b we use[Ajb] instead

o terminology: matrix is in row echelon form if in place Afwe
have triangular matrix, if we have an identity matrix we have a
reduced row echelon form

Example

o For what vglues ob 2 R% there is a solution folAx = b
1214
~Bo oo ?
whereA = 4 2
020 3

o the rank of A is three (transformA into echelon form by
Gaussian elimination)
o there is a solution wheib 2 R (A)

e What about the number of solutions?

e Main approaches

direct elimination of variables

row reduction (Gaussian elimination and Gauss-Jordan
elimination)

Cramer's rule

more e cient methods for numerical purposes (LU
decomposition, iterative methods etc.)

o Number of operations with Gaussian elimination
n3=3+n? n=3,ie. O(nd)
o theoretical record (this far)0 (n?376)

o Note: for solvingAx = b it is not necessary to ndA *

Gaussian elimination

e Forward elimination

e using elementary row operations the augmented matrix is
reduced to echelon form (this is Gaussian elimination)

o if the result is degeneraten( zeros in the beginning of some
row) there is no inverse (or solution to the equation)

e note: rank of a matrix = number of non-zero rows in echelon
form

e Back substitution

e bring the echelon form matrix to reduced row echelon form by
elem. row operations (if this step is included we call the
algorithm as Gauss-Jordan elimination)

! in place ofA we havel and in place ol we haveA !

Cramer's rule for inversion

o The matrix whose(i;j)-entry isCj (cofactor) is called as the
adjoint of A, adj(A)
o Cramer's rule:

.1 _
ALE Gy )

e Note: in terms of numbers of operatios Cramer's rule is more
demanding than Gaussian elimination



Linear algebra: Eigenvalues

SB 23.1, 23.3, 23.7{23.9

Eigenvalues

is the eigenvalue oA andv 6 0 is the corresponding
eigenvector ifAv = v

e Note: it is assumed/ 6 0 becaused would always be an
eigenvector (and is therefore not particularly interesting)

e Other formulation: is an eigenvalue if and only X lis

singular, det(A 1) =0, which is called the characteristic

equation (polynomial) ofA

Facts about eigenvalue and eigenvectors

Every non-zero element of the space spanned by eigenvectors

corresponding to an eigenvalue is an eigenvector (each
eigenvector de nes a subspace/eigenspace of eigenvectors)

) if v is an eigenvector, so isv forall 60

The eigenvectors corresponding to di erent eigenvalues are
linearly independent

Diagonal elements of a diagonal matrix are eigenvalues

Eigenvector determines a direction that is left invariant wnd
A

Matrix is singular if and only iD is its eigenvalue
If a matrix is symmetric, it has real eigenvalues

°
=
el
Bl
QO
=
(0]
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=
@
@,
«Q
[0]
=]
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c
@
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=
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1+ 2+ + p=tracgA)and 1 2 n =det(A).
o trace(A) is the sum of diagonal elements &f

Eigenvalues: Example 2

0 1
10 2
A=@p 5 0A, characteristic equation
302
0 1
1 0 2
det(A 1)=det@ 0 5 0 A=
3 0 2

=6 ) 4 +1
there are three eigeaquLueﬁ;z;f :0'5;4;1 1, with corresponding
0 2 1

eigenvectorsi o3 = @1A ;@A ;@0 A
0 3 1

Eigenvalues: The idea

Idea for a square matriA

can we make a change of variables so that instead\ofie

could consider some other matrix that would be \easier"to

handle?

e change of variables: invertible mapping (matriR), new
variablesP x

o how doesA behave when we introduce the new variables:

take y (new variables) and nd the corresponding i.e.,

x = Py, map this with A, i.e., APy, return back to original

variables, i.e.P APy (image ofy in new variables)

transformed mappind = P AP

previous question: can we n@ such thatD is a diagonal

matrix?

e let ; denote the diagonal element in theh row of D andy;

the ith column vector ofP ! we can deduce thafv; = v,

(becausePD = AP)

Eigenvalues: Example 1

g g é from A we get 8 2
which is singular, hence, is an eigenvalue and the corresponding
eigenvecton = (vy;Vvy) is obtained by solving
00 Vi _
01 w 0
are all eigenvectors corresponding to eigenvalue

A= by subtracting2

, i.e., vectors of the formvy 6 0 andv, =0

3is also an eigenvalue becaude 3| = is singular

0
0 0

Eigenvalues: Example 2

A= 21 g , because this is not a diagonal matrix we need
characteristic equation for nding the eigenvalues
_ 1 3 _
det(A 1) =det 2 0 =
= @+ ) ) 6= 2+ 6

=( +3( 2

the eigenvalues are; = 3 and , =2. The eigenvector
corresponding to ; can be obtained from

_ 23 \%1
A (3= 55
(like all vectors v, 6 0), what is the other eigenvector?

,e.g.,v=( 3;2)is an eigenvector

Eigenvalues: More facts

e Characteristic equation is a polynomial of degnmee

I there aren eigenvalues some of which may be complex
numbers

e in general, nding the roots ohth degree polynomial is hard



Diagonalization Diagonalization: Example

A 2 R" " js diagonalizable if there is an invertible mati# such
that D = P AP is a diagonal matrix

e P can be seen as a change of the basis o Example 3 (cont'd)

0 1 0 1
02 1 50 0
o ; o - " o transformationP = @1 0 O0A andD= @ 4 O0A
A 2 R" " s diagonalizable if it has distinct nonzero eigenvalues 03 1 00 1

o when eigenvalues are distinct ai€d0, then eigenvectors are
linearly independent

e eigenvectors are the columns Bf and eigenvalues are the
diagonal elements ob

e note: matrix can be diagonalizable even when the eigenvalues
are not distinct

Information of eigenvalues Information of eigenvalues

e The nature of the linear function de ned b can be
sketched by using eigenvalues
o if an eigenvalue oA is positive, thenA scales the vectors in

the direction of the corresponding eigenvector e Investigating the de niteness of a matrix by using eigenvalues
e if an eigenvalue is negativé reverses the direction of the o symmetricA 2 R" " is pos.sem.def (neg.sem.def) if and only
corresponding eigenvector and scales if the eigenvalues oA are 0( 0)
o example: how does = lg. koz behave? o respectively, pos. def. (neg. def.) if eigenvaluesaré (< 0)

matrix is inde nite if and only if it has both positive and
negative eigenvalues

if there are no real eigenvectors, there is no directions incivhi
A behaves as described above

! the matrix turns all the directions (and possibly scales them)
cos() sin( )
sin() cos()
(what are the eigenvalues?)

e eg,A= reverses vectors by angle



Solving linear di erence equations

SB 23.2, 23.6

Linear di erence equations

e Example 2: model for unemployment

o employed (on the average), unemployedy
o probability of getting a jobp, probability of staying in jobq

Xe+1 = QX% T PYk
Yerr = (1 o)+ (1 Pk
in matrix form X+t = 4 P X
Yic+1 1 91 p W

o rstidea (brute force): letzk*1 = Az¥ denote the system,
nd zN corresponding ta® by iterating the system, i.e.,
zN = ANz which means that we needN

Solution by diagonalization

o Let us consider a di erence equatiart*! = Azk with
diagonalizableA

1. transform of variablesZz = P 'z andz = PZ

old variablesz 2 R" and new variableZ 2 R"

nd the eigenvalues oA and the corresponding eigenvectors,
form P from the eigenvectors

2. form a di erence equation foZ

Zk+1 =P 1Zk+1 =P lAZk =P lAPZk

note: P AP is a diagonal matrix with eigenvalues in the
diagonal

. solve the resulting di erence equation fa&

. return back to original variables

Hw

Example

e Transform of variables (change of basis)

o let us denotez = (x;y), new variablexX andY ,Z =(X;Y):
X _ 16 13 x and x _ 4 2 X
Y ° 16 23 vy y ~ 1 1 Y

e Deriving the di erence equation foZ

o ZK*1 = p 1APZK andP AP is a diagonal matrix with
eigenvalues on the diagond®, AP = 0o 1
e in this di erence equationX andY are uncoupled!

Linear

di erence equations

o Dynamical system given bg**! = AzK, k =0;1;:::, where

A2R" "andz®2 R" is given

e model for a discrete time process

e eigenvalues can be utilized in solving this kind of systems

o later we shall obtain this kind of systems by linearizing
nonlinear di erence equation

o Example 1: calculating compound interests

Linear

o Observations from the 2d modek*! = Azk, A =

e capital yi, interest rate , yx+1 = (1+  )yk

o beginning from period, y; = (1+ )yo,Y2=(1+ )3yo, i3,
we notice thaty, = (1+ )Xy, (solution of the di erence
equation)

di erence equations

a b
c d

o if A was a diagonal matrix, i.el) = ¢ =0, then the variables
(components ofz) would beuncoupledand we could solve for
the components separately as in the compound interest
example
idea: make a transformation of variables which leads to a
diagonal system use eigenvalues

Example

o LetA =

1 4 i i K+l — pk
1= 0 and the aim is to solve = Az

e Finding the eigenvalues and eigenvectors

characteristic equation

dettA 1)=0, (1 )0 ) 4 1=2=0
we get the eigenvalues;., =2; 1
. . _ 1 4 Vi

o eigenvectors,if (A )= 122 2 v e.g.

vi=(4;1)

- _ 2 4 Vi 2 _ .

(& 2= 5 4 v, &gV =( 21)

a2 ,_ 16 1=3

e transformationP = 11 andP *= 125 23

Example

o Solve forzk: X, =2¥Xp and Y = ( 1KY,
e Going back to original variables

4 2 kX g

k — k —
ZZEPZEE 4 0 (1Y
4 2XXo 2 ( D*Yo _ .k 4 K
2kXO+( 1)kY0 _(2 XO) 1 +(( 1) YU)

o Initial valuesXg and Yo can be obtained by %= P 120

2
1



Results for linear systems Results for linear systems

e Assume thatA is diagonalizable with real eigenvalues
° eigelavalues 1N and eigenvectorﬂléz sv2
1 0 K 0
oD=%: . % inwhichcasot=B: . :§ The general solution of the di erence equatiaf** = AzX
o ok (ZK2 R")iszKk = ¢; Kvi+ cp Kv2+ i+ ¢y Kvn, whereg,
n .

o In the general solutioz? is unspeci ed

When the initial value i?, the solution of the di erence equatio

is zX = PDKpP 120 o Regardless of the initial valug® the solution is of the previous
form
o The result follows by observing thatk = PDKP ! and plug e constantsc;, i =1 :::;n, can be solved wher® is given;
this into zK = Akz0 denotec = (¢1;:::;¢y), thenc= P 120
e note: with the formula forAk we can de ne, e.g.,pK as a

series

Complex eigenvalues Stability of linear systems

e 2d intuition
o complex eigenvalues means thatreverses all directions, .i.,e Origin is (globally asymptotically) stable equilibrium of a sgst
no direction is mapped to the subspace de ned by the direction ZK+*1 = AzK if zZK'1 0 for all z°
e As in the case of real eigenvalue, we obtain exactly the same
solution for the di erence equation but now the matrice3, e note: there may be other equilibria than origin (when?)

D will be complex matrices

e for n =2 we get (by using the rules of addition and
multiplication of complex numbers) a general solution in the

form Origin is stable when tfﬁp eigenvalues are inside a unit circle i
_ ) R - ) A
ZX =2rk[(cicosk  cpsink )Ju  (cocosk + cpsink )v], complex plane, i.ex = a2+ b?< lifa bi are eigenvalues
wherec; and c, are real numbers determined k¢ and the
eigenvalues are i and the eigenvectors are  iv e in case of real eigenvalues, stability is obtained when the
e complex eigenvalues imply oscillations eigenvalues less thahin absolute values

Markov processes Markov processes: state transitions

® s g e the probabilly thatin periodc the system fs at

let us assume that there is a nite number of states state | . . . . .
e State transition probabilitiesn; = probability that in period
probability that the system will be in state 2 | at time k + 1 k+1 the state isi when the state wag in periodk
given the probabilities of its being in the various states in fves o collegting the probabilities in a Markov matrix
periods M1y Min
m=B: -

Mn1 Mnn

e Example (cont'd.)
e we may think that the probabilityx; (k) is the portion of
populations in aré in periodk

e when (for alli 2 I') the probability depends only on what
state the system was in at tim& the process is called as a
Markov process

e Example e e.g.,my = probability of staying urbanj(= 1) or becoming
o let us classify households as urbat),(suburban @), or rural urban 62_0” =3), 1
3 @0.75 002 QlA
o the di erent classes can be considered as stateg; 3 o setM = @02 09 02
0:.05 008 Q7
Markov process as a di erence equation Example
o Probability that in periodk + 1 the state isi: X (k + 1) = o Markov matrixM = 059 054
Prob(transition from statel to statei)  Prob(initial state is 01 06
1) +:0+ Prob(transitiorbfrom staten to statei) o Eigenvaluesdet(M 1)=(0:9 )06 ) 01 04=
Prob(initial state isn) = i Mij X (k) 2 (0:9+0:8) +0:9 0:6 0:04=0,we get
e using the state transition matrix we get(k + 1) = Mx(k), 12=(1:5 152 4 0:5)=2=(1:5 05)=2=1;05
ie., e Eigenvectors; = (4;1) andv, =(1; 1)

e General solution
mig Mi1n x(K

1 0 0 )1
: X=%)E T X%) : K x1(k + 1) ¢ 4 %+c, 1 05
Xn (K +1) M1 Mo *a(K) Xo(k+1) = ¢ 1 1+ ¢ (1) 05



Example

e Remarks

one eigenvalue is one and the other is less than one

whenk 'l | the limit is c1(4; 1) (direction corresponding to
the eigenvector for eigenvalug, because the limit should be a
probability distribution4c; + ¢; =1, i.e.,¢c; =1=5

general result: wheM is a Markov matrix with all
components positive (oM * has positive components for some
k), then one of the eigenvalues is one and the rest are on the
interval ( 1;1), and the process converges to the limit
distribution determined by the eigenvector corresponding to
the eigenvaluel

the limit distribution is a stable equilibrium of the di ererc
equation



Linear di erential equations

SB: 25.2, 25.4

Scalar equations

e Second order linear scalar equatiay + by + cy =0
e example: what is the class of utility functions for which

u%{x)=u%x) = a (the left hand side is Arrow-Pratt measure

of absolute risk aversion) u®{x)+ au%(x)=0

o the solution can be found by using an educated guess (ansatz)

y=e!

Linear systems

e From second order scalar equation to a linear system

o take a new variable = y, when the di erential equation
becomesaz + bz+ cy =0, i.e., we have a pair

z= bzea cyma,y=1z

o more generally, by introducing new variables we can tramsfor
higher order scalar equations into linear systems

Solution by diagonalization

o Example:x = Ax with A = 1 i

e nding the eigenvalues:

det(A  1)=(1 p)A ) 4=0,ie, * 2
22

we get 1., =(2 4( 3)=2=1
e eigenvectorsy(1;0:5) and (1; 0:5)
o the general solution:
1
0:5

o what if the initial value wasx(0) = (1 ;2)?

+ce !

2=3;

1
0:5

1

3

0,

Scalar equations

e kth order di erential equation is an equation of the form

(andy(t) 2 R)
e model for a continuous time process or dynamical system (time
t)
o whenF : R¥*1 71 Ris linear in rst k arguments the
di erential equation is linear

o First order scalar equatiody(t)=dt = a(t)y

e notationy = dy(t)=dt

e if a(t) = a 8t the equatiop is autonomous

 general solutiory(t) = Ce 'a()ds whereC is an integration
constant

Linear systems

o Linear system of di erential equations is of the form
x = A(t)x + b(t), wheret 2 R (time) x(t);b(t) 2 R", and
A(t)2R" D

e Homogeneous autonomous systekft) = A andb(t) =0 for
all t:

Xp = auXit i+ amXn

%o 8n1Xe + 111+ @unXn

e if the question is of nding the solution for a given initial value
X(to) = x° the problem is an initial value problem

Solution by diagonalization

distinct and non-zero, the general solution pf= Ax is
x(t) = Cie ttvl+ Cye 2tv2+ :::+ Cpe "tv"; whereC; are
constants, andv' are the eigenvectors corresponding to the

e The solution of the initial value problem is
x(t) = PePtP 1x(0)
o note: PeP'P 1= e je, the solution is of the same form as
for scalar equationsx(t) 2 R)

Stability

e Originx = 0 is the steady state ok = Ax

x = 0 is globally asymptotically stable steady state of Ax, if
the solutionlimy;  x(t;x% = 0 for all x°

o herex(t; x°) is the solution of the system for initial state®
e Stability by using eigenvalues

« if the real parts of eigenvalues are negative, then origin is as.
stable
e note: some of the eigenvalues may be complex



@ Need for nonlinear models

Multivariate calculus o need to model nonlinear phenomena, e.g., decreasing marginal
pro ts

e linear models may lead to optimization problems with no
Di erentiation, Taylor series, linearization (bounded) solutions, even when there are solutions, the
SB: 14{15, 30 solutions may behave against economic intuition (e.g.,
discontinuities)

@ Nonlinear models are often hard solve analytically

e numerical solution
o local approach: linearize the model around equilibrium,
optimum or other interesting point di erentiation

Di erentiation in R Di erentiation in R"

A functionf : R 7! R is di erentiable atx 2 R if there is a A functionf : R" 7! R™ is di erentiable atx 2 R" if there is a
numberf 4x) such that linear functionDf (x) : R" 7! R™ such that
. jf(x+h)  f(x)j
lim 11 ¢ r)1 () _ %) im KO+ R) £ [DF(IK _ o
h! 0 jhj h!' 0 khk
o rewriting we getf (x + h)  f(x) = f9x)h+ o(h), whereo(h) o Df (x) is the derivative (or total derivative or di erential) of
is a function such thab(h)=h! 0Oash! 0 at x
e aroundx, i.e., atx + h, functionf behaves as a linear o note: in the de nition of the above limitDf (x) is
function fx)h (plus the erroro(h)) independent on hovh goes to zero, e.g., fof (x) = jxj we
o fqx) is the derivative of at x andfYx)h is the di erential havef(0+ h) f(0)= hforallh> 0butf is not
e note: iff is di erentiable for allx 2 R thenf{x) is a function di erentiable at x = 0 because foh < 0 we have
o if fqx) is di erentiable atx we obtain the second derivative f(0+h) f(0)= h,ie, thereis noDf (x) as required in
£9¢x) (higher order derivatives respectively) the de nition
Di erentiation in R" Partial derivatives
o Partial derivatives: assume thdt=(fy;:::;fm), for x 2 R",

i=1;:::;m,j =1;:::;n we de ne (provided the limit
Derivative of a di erentiable function is unique exists)

filx+ hg) fi(x).

e Chain rule: supposé maps an open se8 R" into R™ and Djfi(x) = Iri.r!no h
is di erentiable atx® 2 S, g maps an open set containing
f(S) into R* and is di erentiable atf (x°), then o Djfi is the derivative of; w.r.t. x;, we call it a partial
F(x) = g(f(x)) is di erentiable atx° and derivative off w.r.t x; and write

DF (x°%) = Dg(f (x%)Df (x°)

JIOEE

Partial derivatives Continuous di erentiability

e If f is di erentiable atx, then all partial derivatives exist at

and the(i;j)-component ofDf (x) is Djfi(x), we write e A function that has continuous partial derivatives in an open
Df (x) = [ Djfi (x)] and call this matrix as the Jacobian matrix set containingx is said to be continuously di erentiable at
o If partial derivatives are continuous then function is e k-times continuously di erentiable function has continuosh

order partial derivatives
. . e if f isk-times continuously di erentiable ors we denote
e When there are several argument vectors with respect to which f 2 CK(S) (note: k can be in nite)

we can compute the Jacobian we use the subscript to denote
the variables, e.gf(x;a), Jacobian w.r.t.x is Dxf (x; a)

di erentiable



Gradient of a function

N Gradient off atx isr f(x)= Df (x)7
o geometric interpretationty f(®)=r f(&) (x R)isa
hyperplane irR"*
e r f(x) is perpendicular (orthogonal) to the tangent space of
fy 2 R" : f(y) = f(x)g (level set)

N Directional derivative of at x to directionv is (if the limit
exists)

. f(x+hv) f(x)

R —

o for dierentiable f : R" 7! R we have
fx;v)=rf(x) v=rfx)T v

o if we letv with kvk =1 vary we notice that maximum of
fYx; V) is attained atv = r f(x)=kr f(x)k, i.e.,r f(x) is the
direction of steepest ascent at

Taylor's theorem

If n Ois an integer and a function which isn times
continuously di erentiable on the closed intervid; x] andn +1
times di erentiable on the open intervala; x), then

_ 1@
o (

foo = o @ Ra();

k=0

e for n =0 the result is known as the mean value theorem
e note: there are also other expressions Ry (x)

Linearizations

e According to Taylor's theorem linear function
f(x)=f(a)+ r f(a) (x a) approximatest arounda with
the error termRy(x)
o f(x) is the linearization of at a, or a rst order approximation
o if we have a relatiory = f(x), then arounda the change ofy
is given by the linear term, i.,ey f(a) r f(a) (x a)
@ In many economic models log-linearization provides more
attractive interpretations than standard (above) lineartizan
e reason: expressions are obtained in terms of elasticities

Log-linearizations

The usual way: make a log-transform and linearize

1. if the original variable iX take log-transformx = log X,
then X = €* (note X > 0)

2. plug e* in place ofX (if there are several variables do the
same for each of them)
3. linearizef (¢*) aroundX = e*
o the linearization givesﬁ\(x) =f(X )+ X X )(x x)
o the change ofX is now relative, i.e.,
X X =log(X) log(X )=log(X=X )andX=X =1+%
change
o the relative change of = f(X) has an approximation
FX) FXON=FXC) X FAX)=FX)x x )=
"(x x ), where" is the elasticity

Taylor's theorem

e Motivation: sometimes it is not enough to linearize a
nonlinear system but more information is neededhigher
order approximation is needed

e Purpose: approximate function of a single variable around
a2R

o Notations

o k! is the factorial ofk (0! =1)

o f() is the kth derivative off

e R, is the remainder (function) such that there ison the
interval joiningx and a, such that

f(n+1) ( )

0 e

(X a)n+1

Taylor's theorem: multivariate case

Theorem
Letf : R" 7! R be (m + 1) -times continuously di erentiable on
Nr(a) R", for anyx 2 N, (a)

Xt ®@x  a)

f(x)= W + Rm (X);
. !

=0
1 P 2 P
o wheref W (ait)= | Dif ()i, f@(ait) =~ ;; Dj f ()it
f@ait)= " |4 Dif(Otitjte, 123, and there isz on the
line betweerx and a such that

FM (z:x  a)

Rin ()= (m +1)!

e note: Dj is the second (partial) derivative df with respect
to x; andx;, Djx and higher orders respectively

Example: Arrow-Pratt

e Deriving the Arrow-Pratt measure of absolute risk aversion
(ARA)

e Finding an approximation for a certain loss that a decision
maker with utility functionu is willing take instead of a lottery

o " is random variable zero mean and variance

e condition forx at w: E[u(w + ")] = u(w x)

o by Taylor's theoremu(w + ") u(w)+ "uq(w) + "2u%Qw)=2
(second order approximation) and(w  x) u(w) xu%(w)
(rst order approximation)

o observing thatE["u%q(w) + "2u’{w)=2] =0+ 2u®{w)=2 (note
E['?]= ?)and manipulating gives
X (2=2)uw)=udw)]

o the second term is ARA

Log-linearizations

o Multivariate casgx 2 RY, ,andf : R}, 7! R, then
f\(x)= X )+ X [@(X )=0Xi](xi X ) (turn this into
relative changes form!)

o Examples

e X X (1+x x)

e resource constraint of the economy = C + |,

(y y) [C=Y 1lc c)+[I =¥ I(i i) (log-linearize
both sides and manipulate)

e consumption Euler equationl = Ri+; [Ci+1=C¢]
log-linearization around steady sta® , C ,ie.,R; = R
andCi+; = C; = C , leads to
(¢ c¢) [1= (rt+1 r )+ (csr ¢ ) (linear relation)



Hessian matrix

e Hessian matrix of a twice di erentiable functioh : R" 7! R

o the matrix 0 1

@f (a)=auau @f(a)=@u @
) %@f(aﬁ@z@h @f(a)=@z@<n§
D (x) =[Dy f(x)]= . .

@t (a)=@n @ Bf (a)=@n @
o Taylor's theorem

f(x)= f(a)+r f(a) (x a)+(1=2)(x a)D?f(a)(x a)+Ra(x)

o this gives second order (quadratic) approximationfofit a
o whenf 2 C?(N-(a)) then D?f (a) is symmetric

Linear implicit function theorem

Theorem

o Assume thatA 2 R™ ("*M) ‘and A = (Ax;Ay), with
Ax 2 R™ " Ay 2 R™ ™ such thatA(x;y) = Axx + Ayy
(here(xiy)= 7 )

e If Ay is invertible we obtain fromA(x;y) = 0 the function
y(x)= A A (e, Dy(x)=  AyTAy)

o If we write Aydx + Aydy = 0 we obtaindy = A, 1A dx,
when only one exogenous variable is changed, then we can use
Cramer's rule to nddy

IFT: Example 1
o f(x;y) = %gz; COGY) = yiyE o Xaxet X2 7,

() =y1 X152+ % 5
o Let us take(x%;y%) = ( 2;2,1;1)
(= 2Zxf=2;y0=1;y§=1)

|
@x’y% @’y

Dyf(x%y%) = @ o @

@ (x%y% @ (x%y%
@1 2
o8 2yiys  _ 12
1 xP=(y$)? 1 2
!
o o @1((;",)'“) @1(([;?#“)
Dxf (x%¥) = @,6840) @6ty
@1 @2
_ ) 1 x _ 2 1
B 1=y9 1 -1 01

Example 2

@ Nonlinear I1S-LM

Y C(Y T) Ir) G = 0;
M(Y;r) MS =0

e CY)2(0;1), 1Ar);My = @=@< 0, My = @1=@ >0
(why?)
o write this asf (G; T;MS;Y;r)=0
o assume thatG; T ;M S are exogenous and there is an
equilibrium around which
_1cn o1
PoofO= "wmy () MO

o we getde(Dey ;nf() =11 COIM )+ 14)My () <0,
i.e., (Y ;r) can be de ned as functions of exogenous variables
around equilibrium

Implicit function theorem

e When the endogenous/§ and exogenousx) variables cannot
be separated as ifi(x;y) = c the following questions arise
o doesf deney as a continuous function of (we denote
y(x)) around a given poin® such thaty(x°) = y° and
f(x;y(x))= c?
e how does the change ir a ect the correspondingy’s
(comparative statics)?
e note: there has to be as many equations as there are
endogenous variables
o The casef : RZ27! R (andf 2 C1)
o assume (x%;y°) = ¢, su cient condition for the existence of
an implicit function is that@ (x°; y°)=@ 6 0
o If y(x) is the implicit function the its derivative ak® can be
obtained by applying the chain rule

a@(x%y%)=@

0y 0y —
YOO= gxeyo-e

Implicit function theorem

f :R"™™ 71 R™ continuously di erentiable orN- (x?; y°®) for some
"> 0andf(x%y° = 0, det(Dyf (x%y°) 6 0, then there is
> 0 and functiony(x) 2 C(N (x%) such that
L f(xy(x)=0
2. y(x% = y°
3. Dxy(x%) = (Dyf(x%y?) Dkf (x%Yy°)

IFT: Example 1

e How does change ir; a ect the endogenous variableg?

we get

by Cramer's rule

0.,0y dyr 0.,,0 _ 0
Dyf(x7;y") dys + D f(x%y)da = g
1 2 dy 2 _ o0
102 dp 71 ™7
2 2
o e det 1 > o 1d
yl_de'r:L 2 .
1 2
det 12
11 1
dy, = dxy = Sdxy
det 2 4
1 2

Example 2

o What happens to equilibrium whehl S is kept xed andG
and T are raised equally muchdT = dG")?

1 cqQ)

My ()

e Cramer's rule:

dY =dG

dr=dG

1) dy _ dG cq)dT

M () dr 0

1 CO() |O(I‘)
det = o M)

>0
det(Dey ;r)f ()
1 ¢ 1 cy
det My () 0 o

det(D¢y ;)f())



Total derivative Total derivative

e Letf : R" 7! R. What does the following expression mean?

X
df = dei 1) . . . -
- @ e The result obtained in example 2 using total derivatives can
be obtained by assuming that (G) satisesT{G) =1 or
o heuristically, we think about relations between in nitesifsa T=G+c
e the benet is that we can easily account for relations like dy =dG _ ) o 1
X? = XoXa, i.., 20X = XgUXp + X20Xg dr=dg - Pinf(GiT(G);M™ Y )] "Def()
o the expression is total derivative or di erential form _ 1 M () 19(r) cY) 1
e Formally (1) can be de ned ap 2 R" by thinking ofx;'s as det(Diy . f(G;T(G);Ms;Y;r)) My () 1 C¥) 0

functions on a neighborhood gf and

x
iqpiv) = %XP(P;V)

i=1

Inverse function theorem

f : R" 7! R" continuously di erentiable on an open s&. If
det(Df (x°)) 6 0 then inverse functiod ! exists on an open
neighborhood of (x°) (f is a bijection arounck®) and

Df (f(x%)=(Df (x%) *

e checking directly that a given nonlinear function is a bijection
is extremely di cult

o for bijectivity we only need to show the non-singularity of the
derivative which is an easy task



Dynamical systems

Local stability of steady-states o Dynamical systems
o time (discrete or continuous) and a state (in state space)
e rule describing the evolution of the state: how future state
non-linear dynamic systems, stability by linearization follows from past states

SB: 23.2, 25.4.

e Nonlinear systems

I it may be impossible to nd an analytic solution
! instead of nding solutions the main interest is in steady state
and their stability

Di erence equations Example: National income

o periodk national incomeYy satises Yy = Cy + Ix + Gy,
whereCy is the consumers expenditurdg, is investments,

e A sequencd xkgﬁ:0 R" satis es a di erence equation of and Gy is public expenditures
orderTT if G(X; X« 1;::5;% 1)= 0 (forallk T), where o assumeCy = Yy 1, Gk = Goforallk, Iy = (Cx Ck 1)
G:RM7IR" . . .
e we obtain a di erence equation
e when a di erence equation is given in a rst order form we Y= Yg 1+ (Ck Cy 1)+ Go=
have a recursive presentation, i.aX*! = F(x) 1+ )y Yo o+ G
e in this case the solution of a di erence equation is the . k1 k2 _0
sequence that is obtained from the recursion when the initial e this is a second order equation
valuex® is given y ) e by choosingx = Yy andz = Yy 1 as variables we get the
o the recursion is also called as the state transition equatiam | di erence equation in the recursive form
of motion or dynamic system
X = (1+ )X 1 % 1+ Go
Z = X1

Other examples First order di erence equations

e Economic growth x 2 R" is steady state (equilibrium) of a di erence equation
o production functionf (Ky; Ly), Ki capital, L labor, Cy xk*1 = F(xK), F:R" 7R ifx = F(x )
consumption, decay of capital
Kinn = f(KisLi) + (1 )Kk Gk o non-linear di erence equation can be linearized around steady
o Natural resources state: F(x) F(x )+ DF(x )(x x ), with the change of
o resource stocls, harvest of the resourcgy, growth function vilriableszk: X ooxowe obtain a linear di erence equation
f(s), dynamicssesy = f(S) X ZK*1 = Az with A = DF (x )

I it is possible to analyze local stability of an equilibrium by
analyzing the resulting linear di erence equation

Stability Nonlinear di erential equations

e Consider rst order autonomous nonlinear systen+ F(x),

x is locally asymptotically stable if there fs> 0 such that

x%2 N-(x ) implies thatxX ! x ask!1 ,xX=F(x* 1) for whereF : R" 7! R"

k 1 e general solution and the solution to an initial value problem are
de ned similarly as for linear systems and di erence eqoas

e x is globally (as.) stable ikk ! x for all x°

o for a linear di erence equationg®** = Azk we are usually
interested in the stability of the origin

X is a steady state (equilibrium) of the systerm= F (x) if
F(x)=0

o the equilibrium need not be unique

If I DF(x ) is non-singular and the eigenvaluesf (x ) are
inside a unit circle thenx is locally asymptotically stable




Stability Analyzing stability

x is asymptotically stable equilibrium of = F(x) onS R", if

x(t:x%) 1 x ,whent!1 forallx°2 S the equilibriumx of a systemx = F(x) is locally asymptotically

stable if the real parts of eigenvalues BF (x ) are negative

Herex(t;x9) is the solution of the initial value problem for® ) ) ) ) .
° (t:x7) P o if there is one eigenvalue with positive real part, then the

e If there is" > 0 such thatx is stable onN-(x ) thenx is equilibrium is unstable

locally stable o ] - .

’ o ) e the qualitative behavior of the solution is characterized b th

e If x is stable for all possible initial state€’, thenx is linearized system, note:

globally stable F(x) F(x)+DF(x)x x)=DF(x)x x),with
e Example: growth modek = sf(k) (1+ )k, wherek is the translation of originy = x X we get a linear system

wealth per capita and is a production function y = DF(x )y

e questions: when is there an equilibrium and when is it stable? e forn =1 the condition is thatF{x ) < 0

o the number of equilibria may also be of interest

Analyzing stability

e Example: population model for two species

X1 = X4 X1 X)
X2 = X6 X2 3x1)

o nding the equilibria: () (X1;%2) =(0;0), (ii) (x1;%2) =(0;6),
(iii) (x1;%2) =(4;0), (iv) (x1;%2) =(1;3)
21 X X1
3% 6 2 3
o eigenvalues:if 1.2 =4;6, (i) p2= 2, 6, (iii)
12= 4 6,(v) 1= 2 10

e computation of the Jacobian 4



Basic concepts

Optimization Pointx 2 X is a maximum off : X 7! RonS X if
f(x) f(x)forallx2s$s

Introduction, unconstrained optimization e Mathematical programming (or optimization) problem: nd a
SB: 17, 19.2 maximum (or a minimum) of a given functioh: X 7! Ron a
setS X
e functionf is the objective function
o Sis afeasible set, ik 2 S, thenx is a feasible point (solution)
e if X 2 S solves the maximization problem, it is an optimum
e note: the main tool for the existence optimum is the
Weierstrass theorem

e The maximization problem is denoted asaxys f (x) and the
minimization problem asniny,s f (x)

Assume that the domairX is a subset of a metric space. Then
is a local maximum of the problem if there Is> 0 such that
f(x) f(x)forallx2N-(x)\ S denote: maxy f (X;y)

e If f is maximized ovek whiley are xed (exogenous) we

e Note: if x is a minimum off , then it is a maximum of f(x)
e Local maxima and minima are called (local) extrema (wlog we may consider maximization problems)

e Iff(x )>f(x)forallx2 N«(x )\ Sandx 6 x , thenx is o If the supremum of overS is attained at a pointx , then
strict local maximum (strict global maximum respectively) f(x ) =maxxzsf(Xx)=supy,sf(x)

Optimization problems Optimization problems: NLP

e WhenS = X, i.e., the feasible set is the whole domain fof o Nonlinear programming problems where

the problem is unconstrained, otherwise the problem is S=fx2R":q(x) 0;::ija(x) Oand
constrained hi(x)=0;:::;hm(x) =09, 6 :R" 7' R, hj : R" 7! R,
=100k =100

o The general optimization problem (foK  R") is a nonlinear

programming problem o the inequalitiesg; (X) 0;:::;a(x) O are inequality
@ When the problem involves time, it is a dynamic optimization constraints (note thatgi(x) 0,  g(x) 0), andthe
problem constraintshy(x) =0;:::; hm (x) =0 are equality constraints

e if f, ::;hy are linear (or a ne) the problem is
a linear programming problem

e when there is no time involved, the problem is static

Unconstrained problems: FOC Second order optimality conditions

o f twice di erentiable onX

LetX R" be an open set, anfl : X 7! R be a di erentiable
function onX . If x is a local extremum of , thenr f(x )= 0.

e 2nd order necessary condition:f is a local maximum, then
D2f(x ) is negative semide nite
o 2nd order su cient condition (SOC): ifx is a critical point

e Note: the converse is not necessarily true, ief(x )= 0 is
a necessary but not su cient optimality condition, we call
r f(x )= 0 as a rstorder optimality condition

e The points at whichr f(x) = 0 are critical points off

e Forn =1 the FOC is simplyf {x ) =0

and D?f (x ) is neg.def. therx is a strict local maximum

o note: forn =1, D?f(x )= fN¥x ), i.e,f%%x ) O0f(.e,
f9x ) decreasing ak )

e note: for minimization problem replace neg. (sem.) def. with
pos. sem. def.



Least squares problems

e Data, observations

e Linear modely; = 1xg; + + kX + i

independent and identically distributed observation ertpy
i=1;:::;n

unknown parameter (vector)

more generally we may have a (nonlinear) model

y; = f(x'; )+ ";, where is a parameter vector

the linear model can be written as a systgne X + ",
wherey;" 2 R", X 2 R"” X and 2 R

Envelope theorem

e Consider a problenmaxy,grn f (X; @), wherea 2 R™ is
exogenous
e How does the optimaf vary asa is changed?
o what are partial derivatives ofd (x(a);a)=@,i =1;:::;m?
e i.e., we are interested in comparative statics of the value
function v(a) = max « f (x; a)

Example

o f(x;a)= x%+2ax+4a?
e Optimum by setting gradient to zerox(a) = a
o Plug the solution into the objective function are di erentiate

w.rta

e g(a) = f(x(a);a) =5a?, hence
dg(a)=da = df (x(a);a)=da = 10a

e Same result by using the envelope theorem

@ (x(a);a)=@ =2x +8a=10a

Example: marginal costs

o Test with production functionp KL, wherelL is labor

e set unit costs of labor and capital = 1

e cost of i'boﬂK (capital) and L lgl:ﬁ)r) isK + L, production
function KL, i.e., outputq= " KL, from which we get
L= g?=K, andc(K;q) = g>=K + K

e long run optimumK (q) = q, at whichc(K (q);q) =2q and
dc(K (g);q)=dg =2

@ Observations:

o the graph of a functionc(K ; q) is abovec(K (q); q) except at
K = g (optimum)
e at K = ¢ the tangent of the functions are the same

Least squares problems

o Least squares problemin(y X )T(y X )

e Solution by FOC and SOC
e FOC:rf()=r (y X )(y X )=0,now
rf( )= 2XTy+2XTX , solving for gives
=(XTX) XTy
o SOC:D?f( )=2XTX which is pos. sem. def. (why?)

Envelope theorem

Assume that the optimum of is unique in the neighborhood of
a , f is dierentiable at(x(a );a ), andx(a) is di erentiable
function ata . It follows that dv(a )=da = @(x(a );a )=@; for

o we denoteDv(a ) = Daf(x(a );a ) (total derivative ofv is
the partial derivative off w.r.t. a)

e when isx(a) a di erentiable function?

e it is possible to get qualitative results without actually nalg
x(a)

o partial derivatives are easier to compute than total derivas

Example: marginal costs

e Assume that a rm minimizes costs of laboL ] and capital
(K') when producing a given amourtf
e production functionf (K ; L), i.e., outputq = f(K;L)
e unit costs of capital and labow_ and wy
o problemmin .k w L + wq K s.t. g= f(K;L)
e eliminate labor fromq = f (K ;L) to obtain (short run optimal)
cost functionc(K ; q)
e In the long run capital is chosen such that the costs are
minimized) K (q), in the short run capital is xed
e c(K;Qq) is the short run optimal cost
e Long run and short run marginal costs are the same

o by the envelope theorerdc(K (); q)=dq = @(K (q); q)=@



Convex sets

Convex analysis LetV be a vector space. The s&¢ V is convex if
X+ (1 J)y2 X 8x;y2 X and 2 [0;1]

Convex sets, congzé\./ezfngzq;asiconcave functions e vector x+(1 )y is a convex combination of andy

o X is convex if and orf_,ly iy = :‘:1 ixl 2 X forallk 2
x'2X,i=1;::k, ; i=land ; 2[0;1]i=1;::k,
XK
e a setX is strictly convex ifX is convex and
x+(1 )y 2@ foranyx;y2 X,x6y, 2(0;1)

o Operations that preserve convexity
o Closure and interior of a convex set are convex o Examples
o Intersection of convex sets is convex
e Linear map of a convex set is convex
o Cartesian product of convex sets is convex

o hyperplanep x = c, (open and closed) half spacgs x c,
(alsop x < ¢, p x> c), polyhedral sets = intersections of
half spaces, ellipsoids Vx ¢ (V pos.def.), solutions of
linear equations, simplex
o Note: setsfxg, ;, andR" are convex
(Minimum distance theorem) Le§  R" be a closed convex set Every closed convex set can be presented as an intersection of
andy 2 S. Then there is a unique poimt 2 S with minimum closed half spaces
distance fromy. Necessary and su cient condition fok to be the
minimizeris(y x) (x x) Oforalx2$S

Convex and concave functions Concave functions

If_et\/_ b? é)\(/e;;toqus‘pace and ; V a convex subset of , o Hypograph of a functiorf : R" 7! R is
unction f : I R is concave i hypf = f(x; )2 R™ :f(x) g

o hypf is the set of point below the graph of a function,
f( x+(1 )Y) f(x)+ (1 (y) 8x;y 2 X; 2[0:1] respectively the set above the graph is the epigraphf(epi
e f is concave (convex) function if and only if hiygepif ) is a
convex set

e Functionf is strictly concave if .
e Examples of concave functions

In(x), €*,x when 2][0;1], j xj® whenp 1,
fFOx+1 )y)> FX)HL )f(y)8x;y2X;x6y; 2(0;1) minfXg; ;% 0, X Vx whenV is neg.sem.def

e If f is (strictly) concave therf is (strictly) convex

Properties of concave functions Operations that preserve concavity

. ) . P
Upper level setd) (f; )= fx 2 X :f(x) g are convex Positively weighted sum of concave functionsw; f; (x),
sets w; 0, is concave

e Concave function is locally Lipschitz continuous on the e Minimum g(x) =min 2af(x; ) is concave whefi(x; ) is
interior of its domain concave for all 2 A
e Extra: concave function is almost everywhere di erentiable on e Composite functiorf (x) = h(g(x)),
the interior of its domain g=(g;::;gm):R"7I R™, h:R™ 7! R, f s concave in the
e If V = R" and a function is bounded, convexity is equivalent following cases
tof( x+(1 )y f(x)+(1 )f (y) for some 2 (0;1) 1. whenh is concave, non-decreasing agdis concave for all
o f is concave if and only iy ( )= f( x+(1 )y) is 2. whenh is concave, non-increasing am is convex for all

concave for alk andy on[0;1] 3. whenh is concave angj is linear/ane ( g(x) = Ax + b)



Examples Di erentiable concave functions

e Graph of a concave function is below tangent plane:
o Model of a rm

input vectorx 2 R" fy) 1x)
production functionf : R} 7! R, = fy 2 R:y 0Ogthatis
concave and in increasing in all its arguments

cost functionc : R} 7! R, convex and increasing in all its

rof(x) (y x);8xy2X

Di erentiable function is (strictly) concave if and only if its

arguments X i i
e pricep> 0, prots pf(x) c(x) denedforx O gradient is (strictly) monotone
e Expenditure functione(p) = min xox p X is concave . .
. . X o forf : R 7! R, f9x) is decreasing
e p 2 R" is a vector of prices of inputg 2 X R}, and X o forf :R" 71 Rwe havelr f(x) r f(y)] (x y) Oforall
convex x;y 2 R"

e strict monotonicity: strict inequality forx 6 y

Di erentiable concave functions Concave optimization

o An optimization problemmaxxzs f (x) is concave (or convex)
if f is a concave function an& is a convex set
e whenS=fx2R":g(x) 0; h(x)= 0g, and

L . . X g=(0u;:::;%k), h(x) = Ax + b, then S is a convex set when
e note 1: this is the main tool for analyzing concavity G(x), i =1:::::k, are convex functions

e note 2: negative semide niteness implies monotonicityrof

e note 3: positive (semi)de niteness convexity _
o note 4: forf : R 7! R concavity, f%x) non-positive for alk Local maximum of a concave function is a global maximum

e Hessian matrix of a strictly concave function is not necessarily
neg. nef. but if it is, then the function is strictly concave

Twice di erentiable functionf is concave if and only if its Hessi
matrix D 2f (x) is negative semide nite (on the domain &)

o rst order conditions give an optimum

Concave optimization Parametric optimization and concavity
The set of solutions of a concave problem is a convex set

e The set of maximizers oveB is denoted asarg maxx2s f (x) e Functionv(a) = max ,x (a) f (X; @) (value function) is

e If f is strictly concave and the problem has a solution then it concave wheri is concave if(x;a) and X (a) is graph convex
is unique correspondence

e Note: concavity does not guarantee existence e Graph convexity:

X@H+(@1 )X(@%) X(at+@ )a?d
eeg.,X(a)=fx2R":g(x;a) O i=1;:::;kgis graph
Whenf is concave and di erentiable, ther is an optimum if an convex wherg are convex functions ix; a)
onlyifr f(x) (x x) Oforalx2s$S

e Variational inequality of concave optimization

@ Necessary and su cient optimality condition for a concave
problem

Quasiconcave functions Quasiconcave functions

Let X be a convex subset of a vector spa¢e function
f : X 7! R is quasiconcave if( x + (1 )y) minff(x);f(y)g

e Properties of a quasiconcave functién: R" 7! R

8x;y 2 X and 2 [0;1] 1. adierentiable functionf on an open set convex sét is
quasiconcave if and only ff(y) f(x))r f(x) (y x) O
. . . . forallx;y 2 X
e Strict quasiconcavityf( x+(1  )y) > minff(x);f(y)a. 2.ify rf(x)=0) y D2 (x)y Oforalx;y2X,thenf is
x6y, 2(01) quasiconcave (for strictly quasiconcave functions we need
e (Strict) quasiconcavity is equivalent witk) (f; ) (upper level \<0)

set) being a (strictly) convex set for all 2 R
e If f is (strictly) quasiconcave, theh is (strictly) quasiconvex



Quasiconcavity and transformations

Quasiconcavity and transformations

@ Monotone transformation of a quasiconcave function is
quasiconcave
e i.e., f(x) = h(g(x)), whereg : R" 7! R is quasiconcave and
h:R 7! R is (strictly) increasing
) if a function is a monotone transformation of a concave
function then it is quasiconcave

e If a monotone transformation of a function is concave then
the original function is quasiconcave

o if h(f (x)) is concave with increasiny, then f is quasiconcave
e important speci c case:log-concave functionsh = In

Utility functions

e Preference relations are often described by utility functions

o decision maker prefera to b if u(a) u(b)

o in the ordinal theory of utility the measurement unit of utijit
is not essential; increasing transformation wfdescribes the
same preference relation

N A property of a function that can (cannot) be preserved by an
increasing transformation is an ordinal (cardinal) property

e quasiconcavity is an ordinal while concavity is a cardinal
property

o diminishing marginal rate of substitution, i.e.,
MRS,y =[@(x;y)=@]=[@ (x;y)=@] (marginal rate of
substitution betweerx andy) decreasing, is an ordinal
property

o diminishing marginal utility, i.e.MUx = @i(X;y)=@
decreasing, is a cardinal property

Example: consumer's problem

e Variables
e n commodities,x; amount of commodityi, price p;, incomel
@ Objective function = utility function u(x)
e u is usually assumed to be quasiconcave
e Constraints
o budget constraintp;x; + p2Xo + :ii+ pox, | and
non-negativityx; 0,i=1;:::;n
e Consumer's problem: for givemand| nd the utility
maximizing commodity bundle
o the solution is the consumer's demand, if it is unique then it is
a demand function

e Questions: existence of demand functions, continuity, etc

o Other operations that preserve quasiconcavity
o minimization: g(x) = min y f(x;y) (f quasiconcave as a
function of x)
a composite functiorf (x) = h(Ax + b) is quasiconcave, whem
is quasiconcave (here 2 R" andAx + b2 R™)
o Examples
o Cobb-Douglas utility functiond) (x) = x,*  x,", when
x Oand {>0,i=1;:::;n
o gD functions ardog-concave, they are concave when
i i<land ;2(0;1) forglli
o CES utility functionsU (x) =[ ;( ix' )]1:’, whenx 0,
i>0i=1;::0n,r

Quasiconcave optimization

@ maxyzs f(X) is a quasiconcave optimization problem whien
is a quasiconcave function arfsl is a convex set
e Quasiconcave optimization problem may have local optima
which are not global optima
e argmaxyzs f(X) is a convex set

e if f is strictly quasiconcave and the problem has a global
optimum, then it is unique

Ifrf(x) (y x)<Oforally2sS,y6 x,thenx 2 S is a global
maximum of a quasiconcave optimization problenaxyzs f (x)

e v(a) = max s f(x;a) is quasiconcave whehis
quasiconcave irfx;a) and S is a convex set



Nonlinear programming

constrained optimization
SB: 18

Inequality constraints into equality constraints

e Adding slack variables

e way to transform an inequality constraint to an equality
constraint, e.g., by adding variable we can write a problem
maxf (x) s.t. g(x) 0 to equality constrained problem
maXy:s) F(X) s.t. g(x)+ s2=0
with this trick it is actually possible to derive most of the
results for inequality constrained problems from the theory of
equality constrained problems, otherwise the trick is seldom of
any use

o Note: replacing equality constraint with two inequality
constraints does not work (the problem is that the Jacobians
of the constraints become linearly dependent)

e In many inequality constrained problems, it is possible to
detect active constraints from the structure of the problem

First order conditions: assumptions

e Lagrange function p p
Lix; 5 )= f(x) i 1G(x) i ihi(x)

e 2 RKis a vector of Lagrange multipliers for inequality
constraints and 2 R™ contains the Lagrange multipliers of
equality constraints

e Assumptions:x is a local optimumf, g, h are di erentiable
at X , ko rst inequality constraints are active ak , the
following matrix has full rank

0 @yp) anc) !
Y e
@i (x ) @ (x )
—6: c
@a(x ) @a(x )
e G
@m(x ) @ (x )

Remarks on FOCs

NLP problems

@ NLP problemmaxf (x) s.t. (subject to)g(x) O

we also denotgy(x) 0 (inequality constraint in vector form)
and h(x) = 0 (equality constraints)

if x satis es the constraints it is feasible

if g (x) =0, thenith inequality constraint is active (binding)
at x

when we denotenax, f (x; a) we refer to a problem in which
is exogenous

Nonlinear programming

e Example: consumer's problem
e maxy U(X) s.t. pixa + :ii+ paXy | andx 0,

e whenu is increasing in all of its arguments, then budget
constraint is active at optimum (when prices are positive).
Moreover, oftenu(x) = 0 whenx; =0 for somei and
U (x) > Owhenx 0, which means that at optimunx 0

e Feasible points of inequality constrained problems

corner point, otherwisex is an interior point
o respectively, whem is an optimum, we say that it is a corner
solution or an interior solution

First order conditions

o Result: there are Lagrange multipliers such that
@x;: )

@ 0 (6}
ig(x) = 08i @)
gi(x) 08i 3
hi(x) = 08i 4

i 0 8i (5)

@ In vector notation:
rL(x;; 0

g(x) = 0;
9(x ) 0;
h(x) = 0
0

FOCs: nomenclature

e Necessary optimality condition

e known as Karush-Kuhn-Tucker conditions

o for minimization problems the condition is otherwise the same
but the sign of Lagrange multiplier of inequality constraints
{ "constraints) is changed

e not all points satisfying FOCs are (local) optima

e Works also when there are no constraints at all, or either only
equality or inequality constraints

e The rank condition is known as non-degeneracy constraint
quali cation (NDCQ)

e assumingky rst inequality constraints active was done to
simplify notation, more generally the matrix can be formed by
collecting the active constraints

(1) Lagrangian optimality X is a critical point ofL)
(2) complementary slackness

(3){(4) primal feasibility
(5) dual feasibility



Geometric interpretation

e Problemmaxf(x) s.t. g(x) O
e At local maximum,x , there is no feasible ascent direction

o d 6 0 is a feasible direction ax if there is such that
g(x + d) Ofor 2(0; )
o d 6 0 is an ascent direction ax if there is such that
f(x + d)y>f(x)forall 2(0; )
) at local maximum there is nd 6 0 such thatr g(x ) d< 0
andr f(x ) d>0
e whenr g(x ) 6 0 this is equivalent to FOCs

Example 1

o Problemmaxx; X2 s.t. xZ+ xZ=4,x;% O
e Lagrangian

Lx;; )=x X2+ 1+ 2% (x+x2 4)
e FOCs:

@=@.=1+ 1 2x =0
Q=@= 20+ 2 2x =0
x2+xZ = 4

Xi 0,i=1;2

X = 0;i=1;2

i 0i=1;2

Example 2

of(x)= (xx 12 (x¢ 12andh(x)= xZ+xZ 8

o Geometric interpretation: minimize the distance frofh; 1) to
circleh(x) =0

e By geometric intuition the solution seems to {&;2)

e FOCs: equality constraint and 2(x; 1)+2 x; =0,
2(x2 1) 2 x2=0, by choosing =1=2the FOCs are
satis ed (2; 2)

Example: Cobb-Douglas consumer

@ Solving the pair of equations: budget equation and the above
condition

o from budget equation we gep;x; = | p2X2, and by plugging
this into the other we obtainx, = (1 a)l =p, andx; = al =p;

e What can you say about the optimality of the solution?

Cookbook: solving FOCs

e Method 1 (brute force): nd all the points that satisfy the
FOCs

o for equality constrained problems simply nd all solutions of
the system of equations determined by FOCs

e when there are inequality constraints, go through all possible
combinations of active constraints, if some combination is not
possible it will imply wrong sign for one of the Lagrange
multipliers

o Method 2: make an educated guess of active constraints (or
even guess the solution)

e check your guess by plugging it into FOCs

Example 1

e Deducing the active constraints

e both inequality constraints cannot be active at the same time

e if 1= =0 (e.g., none of the constraints is active) then
from@=@,; =0 weget = 1() x = 1=2 infeasible!)
orx;=0() x=2; =1=4)

e Are there other solutions than
(X1;%2; 15 23 ) =(2,;0;0;0;1=4)? If there were therx, > 0
and , =0, by the constraints = 1 which leads to
infeasiblex;, hence there are no other solutions

Example: Cobb-Douglas consumer

e Two commodities, Cobb-Douglas utility function
U (X1;X2) = xlale 2 and budget constrainh(x) = 0, where
h(x1; %) = pixe + pax2 |

oL )=xfx * (Pxatpe 1)
e« NDCQ holds forp 6 0
e FOC: budget constraint anéx? xi @  p; =0,

(1 axfx ® p2=0
e By eliminating we get
1 a)(x1=x2)? a(x1=x2)? (p2=p1) =0, i.e.,
pi(l a) paa(xi=x2) =0 and eventually
pixa(l  a) p2xa=0
e note: we assumey;X; > 0 at optimum

More general FOCs

e FOCs can be formulated for problems where the optimized
variables are in nite dimensional

o formally this works only when the underlying space of
optimized variables has particular structure

° Exan)]éple: consumer's life cycle consumption problem

max  Xu(c), 2 (0;1)
k=0
o periodk consumptionc
e initial wealth (exogenousyv, interest rater, dynamics
Wi = (1+ r)(wg  ck), wherew is periodk wealth
o di erence equation for wealth is considered as a constraint



Example (cont'd)

e FOCs

e Lagrangian

X
L(c;w; )= Ku(ek) K (Whker L+ D)W )
ko

note: optimized variables arec, wi+1, k0, i.e., there are
in nitely many variables to be optimized

di erentiate L w.r.t all variables ¢«'s andw's) and set the
di erential to zero

KuYe)+ k@+r)( 1) = O0(di. Lwrtc)
L+r)yx ka1 = O(di. Lwrtw;k 1)
Wic+1 @+ r)(w c); k O

e FOCs are a di erence equation fax, ax and , k=0;1;:::
e note: we can eliminate 's



Introduction

Comparative statics o How does the solution of an optimization problem change
when exogenous variables change?

. N o example: how does consumer's optimum change when the
Constrained optimization, income is increased?

|nterggra]t:rt;c|)ir;ecg :ig;?:gs twg(l)t;glr:qers, e Optimization problemmaxf (x;a) s.t. h(x;a) = 0, wherea
SB: 19.1, 19.2 is exogenous
o the solutionx (or arg max ) will depend on exogenous
variables, i.e., it is a correspondence (or functior(a)
e how doesx(a) change as a function od, what about
v(a) = f(x(a);a)?

Interpretation of Lagrange multipliers Interpretation of Lagrange multipliers

e When we think the right hand side df(x) = a as an amount
of resource, therdf (x(a))=da; tells how the optimum
changes as the amount of resourcehanges

Assume thatx(a) solvesmaxf (x) s.t. h(x) = a, where
h:R" 7! R™, andx(a) and (a) (Lagrange multipliers
corresponding tak(a)) are di erentiable functions on an open se

of exogenous variables Assume also that the rst order o Sketch for a proof:
conditions with NDCQ are satis ed ak(a), (a). Then o let v denote the value function, by chain rule
rv(a= (a),ie.,df(x(a)=dag = ;(a). rav(a) =[Dax(@)]" r «f (x(a))

o Lagrangian optimalityr xf(x(a)) [Dxh(x(a))]T (a)= 0,
i = T

o Note: the result tells the change of optim&! for small o «f (x(@) "LDX hix@"® (@)

hanges of exogenous variables o by dierentiating h(x) = a, we get )

chang g Dalh(x(a))]= | , Dxh(x(a))Dax(a)= I (by chain rule)

e Lagrange multipliers can be interpreted as shadow prices! o combining the results

o Why these assumptions? When can we be certain ) is rav(a) = [Dax(@)]" Pxhx@]T (=17 (@)= (a)
di erentiable?

Interpretation of Lagrange multipliers Generalized envelope theorem

maxy f (x) s.t. g(x) a and assumptions otherwise as before and
a has an open neighborhood such that the active constraints

maxy f (x;a) s.t. h(x;a) = 0, a2 R. Assume that that the

. ) solution of the problenx(a), (@) are di erentiable (on an open
remain the same on that nelghborhood. Then . neighborhood of) and the FOCs are satis ed and NDCQ holds at
df (x(a))=da = i(a), where ;(a) is the Lagrange multiplier optimum. It follows thatdf (x(a); a)=da = @ (x(a): (a):a)=@

corresponding td th constraint.

e Combination of envelope theorem and the result on the

o example:maxxy + Xp s.t. X2+ x2 ndx, 1,a>0. . ) S
example:maxx, + Xp SL x{'+ 3 a andx, »a>0 interpretation of Lagrange multipliers

What happens ata =27

Example 1 Example 1

o f(xi;%2) = xPxz andh(xg;xp) =2x¢+ x§ a

e The problem can be solved by eliminating the other variable o The drawback of elimination approach is that it does not
from the constrainth(x) = 0, we get an unconstrained produce Lagrange multiplier for the constraih(x) =0, to
problem get the Lagrange multiplier we have to formulate FOCs

@ (xX)=@q = lex;,pandi@l(x):@l =4x4, hence,

this trick works more generally, but usually elimination of
° g v y (@)= xx(a)=2=a=12

variables is di cult, note also that if there are inequality

constraints they have to be taken into account after the e Try e.g.,a; =3 andap = 3:3, according to theory
elimination ) N [f(x(a2)) f(x(a))]eaz a] (a1), now
e by ehmma}mgxf, |.le., x?=(a x$)=2 an(zj plugging this into f(x(az)) f(x(a)) 0:1537 (a1)=0:5 which gives
the objective function we gemaxxx(a  x3)=2 (a1)(az &) =0:3 0:5=0:15 the dierence is in the third
o di erentiating and semnq)thidenvatlve topz(ﬂwe get decimal

a 3x$=0,ie,x= a=3 andx; = a=3, the
optimum isx = (' a=3; a=3)



Example 2 Example 2

o We estimate how much the rm should invest in lobbying (or
bribing) for the change of the constraint to the form

e Output is produced of two raw materials;, X2 (amounts) X1= Xo+ @
o production functionx, X, , unit costsc, andc,, price p @ We solve the problem without making the tempting
o objective function (prot) px; X, CiX1  CoXo eliminationx; = x2
e Regulator sets a constraint; = X e we do not eliminate variables at this stage because we want
o Assume that the rm wants to add the usage of input the Lagrange multiplier of the constraint
o this assumption imposes some restrictions on exogenous o FOCs:
variables (see below)
o the rm would rather face a constraink; = x, + a,a> 0 1
than the original constraint PX X G =0
PXg X Lo+ =0
X1 = X

Example 2 Di erentiability of solutions

e Solving the FOCs by plugging = x; into two other
conditions and eliminating

o When isx(a) di erentiable? And what is its derivative?

sweget p,* 1+ pyt ! oo =0 e Unconstrained problem
o the solution isx; = X2 = [(c1 + c2)=(p( + NI+ Y e FOC:@(x;a)=@; =0,i =1;:::;n, denote this set of
e Lagrange multiplier is = ( c; c)=( + ) equations as-(x;a) = 0

o by implicit function theorem, the solutiox(a) is di erentiable
. ) if the matrix DyF = D2f is non-singular
willing to add input1 o the assumptions of IFT are satis ed whein2 C2(N-(x(a)))
o for a smalla the rm should invest at mosta for lobbying, and D2f (x; a) is non-singular orN- (x(a))
is the price of the constraint

e When exogenous variables satisfg, > ¢, the rm is

Di erentiability of solutions Example: consumer's problem

e Equality constrained problem

e maxyu(x)st.p x I,x O0,x;p2R",p Oandl are
o FOCs are a system of equations that determingg) and (a) exogenous

o FOCs can be written as e we assume that at optimum budget constraint is active and

rxL(x;;a) = x 0
h(x;a) = 0 e FOC:
o IFT requires that the Jacobian of this system w.(x; ) is r u(x) p =0
non-singular | x = 0
e note: non-singularity also guarantees NDCQ p -

denoteF (x; ; a) = 0, IFT: ) . ) . .
o denoteF (x; ; a) = 0, e The solution (when unique) is Marshallian demand function

D(x(a); (@)= [Dx; F(x;; a)l 'DaF(x;; @) x(p; 1)

Example: consumer's problem Example: consumer's problem

e Di erentiability of the demand, the below matrix should be

e Using IFT we get the Jacobian

non-singular
2
Hop)= © L;(TX) ; Doy (X(i1); (1) = [HGP)] Do) F (x5 pil);
where 0 1
o H is the Jacobian of FOCs w.r.t(x; ) e @ 0 gA
o H is non-singular wheiD2u(x) is neg. def. (and > 0), in DpnF ;i pil)= @0 ¢
that case alscH is neg. def. X
o Exampleu(xy; x2) = In x1 +In x, FOCs: e eg,z orp=(2;2)andl =1, we getx; = X, =1=4 and
Pa po= 0 ’ 0 1,0 1
1= p = 0 6 0 2 2 0 0
= Dy (X(pi1); (pi1))= @0 6 2A @0 2 0A
PP e =00 2 2 0 1= 1=4 1
0 1
= 0 ot ‘ @0 1e 1A
andH(x;p)= @ 0 1=%¢  pA we getDe; (x(pi1); (pil)) = 8 t—s 12

P1 p2 0



Su cient conditions for global optimum

Su cient optimality conditions o NLP problemmaxf (x) s.t. g(x) 0Oandh(x)= 0

Solution of the FOCs is a global optimumfifis concave andjy,
SB: 19.3,21.5 i=1;:::;k (g:R" 7! RK) are quasiconvex ant(x) = Ax + b

e whenf is strictly concave the solution is unique
o concavity off can be replaced by the assumption thiatis
quasiconcave and f (x) 6 O for all feasiblex

Second order conditions Second order conditions

Letf, g, h be twice continuously di erentiable around which o Remarks
satis es the FOCs is a local maximum,IIfsz(x i) s

negatively de nite on the set o when all Lagrange multipliers corresponding to active ineiyal

constraints are positive, the€ is a tangent set de ned by the
_ . B active inequality constraints and the equality constraints
C=fve0:rgx )_ SR S 255351 o the 2nd order condition is not satis ed whe@ = ;
rgx) v O i=k+21;:::;ky; e a point can be a maximum even though neg. def. requirement
Dh(x)v = Og; is not satis ed, however we have :

wherek; rst inequality constraints are active and rskp of these
have strictly positive Lagrange multipliers If x is a local maximum, theDZL is neg.sem.de8v 2 C (when
C6;)

neg. def. mathematically:v' D?L(x;; )v<08v2C
note: Lagrange multiplier vectors and corresponding tox , i.e., for
the variables FOCs hold

the neg.de niteness requirement is known as the second ordsi cient
condition

Second order conditions Investigating de niteness

o Determining the de niteness obZL on linear constraints on
setC = fv 2 R" : Dh(x )v = Og
e determine the de niteness of the bordered Hessian

0 Dh(x)
Dh(x)" DZL(x; )

e negativesemide niteness does not imply optimality

e Variations of second order conditions

o if DZL(x ;; ) is neg. def. (for alv), then x is a local
maximum H=
o if and are Lagrange multipliers correspondingxo in
FOCs andDZL(x; ; ) is neg. def. (for allv) and for all

A ! : e if h:R"™ 7! R™, then we need to check the last leading
feasiblex, then x is a global maximum

(n m) principal minors: if they alternate in sign and dét)
has the same sign as 1), then DZL(x ; )

e example:n =2 andm =1, it is enough to compute the
determinant ofH, if it positive, thenDZL(x; ) is neg. def.

Recipe for checking the su cient conditions Recipe for checking the su cient conditions

e Let us assume that we have a candidate for an optimum from
FOCs

1. Does the problem seem (quasi)concave?

o if yes, show it, if no proceed to 2. 3. Determine the de niteness of the bordered Hessian
2. Does it seem possible th@?L is neg. def. for alv? o alternatively you may check the de niteness BPL on C
o if yes, show it, otherwise proceed to step 3. directly by using the de nition; eliminate some of the variable
o note: D2f is part of D2L, thus, it makes sense to begin by (components ofv) from the equation of the tangent set, plug
checking whetheD2f is neg. def. the variables in the expression BPL and hope that you can
e if D2f is not neg. def. then it is unlikely thab2L is neg. def. now say something on the de niteness
for all v

o if D?f is neg. def. then check the Hessians of constraints

o if all Hessians are pos. def. (neg. def.) for constraints with
positive (negative) Lagrange multiplier, then show thafL is
neg. def. for allv.



Example Example

o maxx?x s.t. 2x2 + x3 =3
e From FOCs yve get s'B< candidates for an optimum

> (0 30 o Hessian of the constraintg g matrix is pos. def.

(aixes )= ( LL1=2) i 0 2
> e at points(x; )=( 1;1;1=2) we getD2L =
(1 1 1=2) points (x; ) =( ) we getDy 2 1
which is inde nite, however on
e Hessian matrix of the objective functionzx2 24 the v2C=1ive0:(4 ( 1)2 1) v=0gthe quadratic
2 0 form de ned by the Hessian is D2Lv = 4vZ vZ< 0, ie.,
determinant is 4x? 0, i.e., the leading principal minors are the points are local maxima

2x, (1st lead. princ. minor) and 4x (2nd lead. princ.
minor), it seems that the matrix inde nite

Example

o What about the rest of the solution candidates?

e x=(0; p§): whenx, 0(xz 0) thﬁ oobjective function is
at least (at mBsJ) zero. Hencex = (0; 3) is local minimum
andx =(0; 3) is local maximum

satx=( 1, 1)we getDZL = 0 2 , which is
2
0 1
0 4 2
inde nite, the bordered Hessian i® 4 0  2A
2 2 1

e in this casen =2 andm =1, i.e., we need check the
determinant of the matrix which is 48 implying that D2L is
pos. def. onC which means that these points are local minima



Introduction

o Elements of programming

Introduction to Programming and Matlab o core: syntax (language) + logic + math
o creativity + rigidity

e learning by doing; work + making mistakes
o Motivation for economists

e most problems are too complicated to be solved with paper
and pencil

e way to gain deeper understanding of economic models, e.g.
nding 'hew phenomena"

e trend: computers become more e cient, computation costs
decrease

Matlab tutorial

Programming as a part of academic work Programming languages

e Lay out an algorithm in a form that computer ‘Understands"it

1. Analyzing problem; creating a model ) )
yzing p ! 9 e a programming language needs to be precise enough and close

2. Designing an algorithmic solution to human languages

3. Programming the solution in a particular programming o Elements of a programming language
language e commands (‘vocabulary’)

4. Testing the correctness; going back to previous steps o rules how to combine commands

e Learning to program is comparable to learning a language

5. Revising and extending the model and the software . h -
e note: programming languages are not forgiving to mistakes

Overview on programming languages Some examples and curiosities

e High-level programming languages

e languages close to English (note: high vs. low level is relative) °R
e need to be translated (compiled) to instructions that the e GAUSS
c?ImpuIter hardware understands o Stata
o Compiled anguage; _ _ _ o GAMS
e a separate compilation step is needed before program execution i
o examples: C, C++. Java, Fortran e Mathematica
e Interpreted languages e APL: a functional language

o program is compiled (translated) during the execution e Octave: free alternative to Matlab
o examples: Matlab, Python, Lisp

Designed for scienti c computing
Relatively easy to learn
Quick when preforming Matrix operations

Can be used to build graphical user interfaces that function as
stand-alone programs

Has a huge number of Toolboxes
e Has good built in graphics for plotting data and displaying

e Matlab is interactive system and programming language for
general scienti ¢ and technical computation and visualization

o History

developed in 1079's by Cleve Moler

o the purpose was to develop an interactive program to access
LINPACK and EISPACK (e cient Fortran linear algebra

e © o o

°
©

packages) X
o the name comes from 'Matrix Laboratory" Images )
o rewritten in C in 1980's e Matlab as a programming language
e Mathworks was founded in 1984 e is an interpreted language; writing programs is easy, errors are

easy to x, slower than compiled languages
e has object-oriented elements
e is NOT general purpose programming language



Basics of Using Matlab

variables and elementary operations

Numerical variables

e Entering a variable: =
= name of variable is a sequence of letters and numbers (no
spaces, no numbers in the beginning), name cannot be a
reserved keyword
o Entering scalars, matrices, and vectors
o examples 1, entering a scalar:
a=1
e example 2, entering @ 2 matrix:
A=[10; 2 3]
e note: the role of semicolon
e example 3, entering a row vector:
A=1[10 2 3]
e example 4, entering a column vector:
A= [1; 0; 2; 3];
e Accessing the;j element of an array:
Ai.j)

Basic principles

e In Matlab all numeric data is stored in various size of arrays
o the elementary (algebraic) operators apply to arrays (or
matrices = array with two dimensions)
o state of mind: everything is arrays (crucial for writing e ent
code and understanding Matlab programming)
o Note: Matlab can be used as a calculator for scalars
the usual scalar operatorst, , , = *, parentheses
relational operators<, >, <=,>=,==, ~=
relational operators: & (and)j (or), ~(complement), xor
standard algebraic rules apply

Other data types

o Character arrays
e A = 'string'
e Structures
o used for grouping data, example:
persons(1).name="John’;
persons(1).age=35;
persons(2).name='Diana’;
persons(2).age=60
o Cell arrays
e elements can contain any data, example:
A{1}=ones(3);
A{2}='John’";
A{3}=persons

Generating arrays

e Colon operator
e syntax: variable=startvalue:stepsize:endvalue
e example:
a=0:2:6;
e Commands for creating arrays
e arrays of zeros; zeros, array of ones; ones
o diagonal matrices; diag, identity matrix; eye
o random arrays: rand, randn, randi
e Initializing variables
o Matlab may execute faster if the zeros (or ones) function is
used to set aside storage for an array before its elements are
generated

Information about variables

Handling arrays

e Arrays can be concatenated
o example: A=[B CJ;
o A(ri:raki:kp) returns the block consisting of the elemeriks
up to and includingks, from rowsr; up to and includingr;
from A

o respectively if there are more dimensions
e note: A(r1:rz,:) picks the matrix consisting of rows fromy to
r2
e A(v1,v2) returns the elements in the rows speci ed in vector
v; and the columns speci ed in vector,
e \end"refers to the size of the relevant dimension
e Examples:
A=[magic(6) ones(6,1)];
B=A([1,3], [2,4])
a=A(2,:)
B=A(2:4,3:end)

Basic maths

e To show a list of variables stored in memory use who and whos
o To clear variables use clear
e during programming, when testing your scripts, it may be
worth clearing the variables every now and then
e other clear commands: clf and clc
e Array functions
o information on arrays: size and length (for vectors)
o reshape, repmat, squeeze
e Saving data
o save command (and load) and diary
e Importing data
e loading .txt les: importdata, dimread, csvread, fopen, ...
o reading xIs les: xIsread

+ and - work for arrays of the same size
* is matrix product
o example:
a=[1 2; 3 4]*[3;6]
A™n is used to raise matrid to a powern

® o

e 'is transpose
To make an operation (+,-,*,/,") element-wise use . before
the operator
o example:
a=[1 2; 3 4].*[5 6; 7 8];
b=[1 2; 3 4]*[5 6; 7 8];

[

e note: many built-in functions operate element-wise



Logical expressions

e Relational operators
o smaller than €), smaller or equal than< =) respectively,
larger than, equal ==, not equal =
o outcome of logical expression is either true (1) or false (0)
e other commands: any, all
e Logical conditions can be combined into logical expressions
using logical operators
e and (&), or (j), not ~
o Relational and logical operators can be used over arrays
o for scalars it is recommended to use && (short-circuit and)
instead of & andjj instead ofj
o the outcome of logical condition is a logical array
e Example:

x=rand(10,1);
a= (x>.4 & x<.6)



Basic 2D plotting

e plot command

o o plot(y) plots vector y against its indices
Graphs and Plots in Matlab e plot(x,y) plots vector y against x
a fplot can be used for function plots (no need for arrays)
) ) ) ) o example:
2d and 3d graphics and image manipulation x=1:100; y=x."2-5; plot(x.y)
e Style commands, see help plot

e line styles: dashed, dotted, dash dotted
o plot markers: +, , 0, x
e line colors, line width etc

e New gure window: gure

Plot commands 3D plots

e Labels, title and legends

o xlabel, ylabel, title, legend, text e Use plot3 to draw 3d lines

e note: Matlab understands some latex o example:
@ Multiple plots in same gure z=[0:pi/50:10*pi];x=exp(-.2.*z).*cos(z);

e hold on (and hold o) y=exp(-.2.*z).*sin(z); plot3(x,y,z);

o use plot(x1,y1,x2,y2) _ _ o Surfaces and contours

_° combine multiple y values in a matrix: plot(x,[y1 y2]) e to evaluate a function at givex; y-grid-points use meshgrid to
o Miscellaneous create the grid

e grid on (or 0 ), axis box, axis square, box on (0) a use surf to plot the surface

o axis range: axis([xmin xmax ymin ymax]) e use contour to plot contours
o Example: o example:

[X,y]=meshgrid(-5:.5:5,-10:.5:10); z=x."2+2*sin(y);
figure(1); surf(x,y,z);
figure(2); contour(x,y,z)

figure(2); x=1:100; y=x."2-5; plot(x,y,'k-.");
grid on; axis([10 50 0 10000]), axis square,
y2=x.°(1.5)-10; hold on; plot(x,y2,'b--");
xlabel('x’); title('example’)

Useful graphics commands

e Several plots in the same gure: subplot(m,n,p)
o splits the gure intom n matrix, p identi es the part where
the next plot will be drawn
e Bars, pies, histograms
e example:
subplot(2, 2, 1); bar([2 3 1 4; 1:4]), title('Bar graph { mult iple series')
subplot(2, 2, 2); bar3([2 3 1 4; 1:4]),
title('3D bar graph')
subplot(2, 2, 3); pie([1 2 3 4]), title('Pie chart’)
subplot(2, 2, 4); hist(randn(1000,1))
e Exporting gures
e use print command, example:
print -deps test.eps



Programming with Matlab

scripts, loops and conditional expressions, functions

For loops

e Syntax to repeat execution of a block of code
e basic syntax:

for counter=startvalue:stepsize:endvalue

% some commands

end

the following syntax is also possible

for counter=[vector]

% some commands

end

example:

n=100; x=1:n;

for i=2:5:n

x(i)=x(i-1)+i;

end

plot(x)

Conditional execution with Switch structure

e Alternative for if structure
e Syntax:
switch variable
case optionl
statements ...
case option n
statements
otherwise
statements
end
o Example:
state = input('Enter state: ')
switch state
case {TX', 'FL, 'AR?}
disp(‘State taxes: NO');
otherwise
disp(‘State taxes: YES')
end

Interaction with the user

e Receiving input from the user
e as function arguments (to come)
e input command, e.g., before 'Input(‘Enter state: )"
e Displaying output
e disp command, example:
A = [1 4];disp('The entries in A are'); disp(A);
o printf (allows specifying the output type), example:
X =2
printf(The value of x as integer is %d \n
and as real is %f', X, X);

e Number display can be controlled by format command

Introduction

e It is possible to write Matlab commands (or scripts) in m- les
and execute these les
e m- les can be called/run in Matlab by their name
e anything in the Matlab workspace can be called from a script
e note: m- les are text
e Functionsare computer codes that accept inputs from the
user, carry out computations, and produce outputs
e functions are created in m- les
o functions di er from scripts in having a function declaration
(more later) and you cannot (unless you necessarily want) call
variables in Matlab workspace inside a function
e note: many Matlab functions are implemented as m- les, to
view the code use edit command
o Note: comments are added in m- les by starting the comment
with %
e in general you cannot comment your codes too much

Conditional execution with if/else structure

e Syntax
if logical_expressionl
% commands executed if expressionl is true
elseif logical_expression2
% commands executed if logical_expressionl is false
% but logical_expression_2 is true
else
% executed in all other cases
end

e note: else and elseif are not necessary

o logical expression is composed of relational and logical
operators

example:

if x>=0

y = sqrt(x);

else

disp('Number cannot be negative');

end

While loop

e Syntax:

while logical_expression
commands
end

o the loop executes the commands as long as logical expression

is true
o example:
n = input(Enter nr > 0: ); f = 1;
while n > 0
f=f>*n
n=n-1
end

e Breaking loops
e break command inside loop (for or while) terminates the loop
e note: any Matlab script can be stopped from running by
pressing control + ¢

Writing a function

e Each function starts with a function-de nition line that
contains

e the word function

a variable that de nes the function output

a function name

input argument(s)

example:

function avg = Average3(x, Yy, z)

avg = x +y +2)/ 3

e Function name and name of M- le should be the same
o function name has to be a valid Matlab variable name
o recall that Matlab is case sensitive
e m- le without function declaration is a 'script" le

e Using help
o comment lines immediately following the rst function line are
returned when help is queried



More advanced function programming Local and global variables

e Inputs and outputs
e nargin and nargout, varargin e Variables inside a function in an M- le are local variables
e note: it is not necessary to give all arguments (unless needed) o local variables are not de ned outside the function
or to take all outputs o subfunctions have their own part of memory and cannot access
e note: it is possible to write a function without arguments variables of the main function (unless they are shared via
e Subfunctions global)
e complex functions can be implemented by grouping smaller e Global variables are available to all functions in a program
functions (called subfunctions) together in a single le e warning: it might become unclear what a global variable
o any function declaration after the initial one is a subfunction t contains at a certain point as any intermediate function could
the main function, a subfunction is visible to all functions have accessed it and could have changed it (hence avoid them)
declared before it o global variables are typically reserved for constants

o example: e global variables are declared in the workspace using the
function [outputl,output2]=myfunction(inputl) keyword global
% some commands e when used inside a function, the function must explicitly
c=sub_myfunction(a,b); request the global variable by name

% some commands
function outputl=sub_myfunction(inputl,input2)

Miscellaneous: directories, diagnostics Tips for e ciency

e Avoid loops and vectorize instead
Use functions instead of scripts
Avoid overwriting variables

e How does Matlab search for function les?
o rst from the current working directory, then from other
directories speci ed in the path
o useful path command: path, pathtool

e Debugging an_d enhancing your code Use short circuit && andjj instead of & andj
e Matlab editor has a debugger tool

o pro le and tic (toc) commands can be used to analyze Use the sparse format if your matrices are very big but contain
computation times many zeros

]
]
e Do not output too much information to the screen
]
°

e Function Handles e Finally: there is a trade-o between speed, precision, and
o useful for functions of functions, example: f = @fun creates a programming time
function handle 'f'that references function 'fun" e don't spend an hour guring out how to save yourself micro

seconds of computing time



basics on writing a Dynare model,
material: Dynare user guide at www.dynare.org

The purpose

e Finding a solution to a dynamic system of the form
Erff (e+1:yive 1" )= 0
e such systems arise from stochastic macro models
e y; are endogenous variable, are exogenous shocks
(expected value zero), are exogenous parameters
e a solution is a function (e.g., policyy; = g(y: 1;"t), note
that f is known
e in the deterministic casé; are known (no expectation) and
solution is simply a path of's
e Dynare gives linearization @f around the steady state
o at the steady statey it holds that E-[f (y;y;y;"; )]=0
o the rst order Dynare solution is of the form
Yi =y+ Ayt 1 Yy)+ B"t, second order approximation
respectively

Introduction

'DYNARE is a pre-processor and a collection of MATLAB routines
that has the great advantages of reading DSGE model equations
written almost as in an academic paper."(DYNARE User Guide)
DYNARE can be used to:

compute the steady states of DSGE models

compute the solutions of deterministic models

compute rst and second order approximations to solutions of
stochastic models

estimate parameters of DSGE models
compute optimal policies in linear-quadratic models
See www.dynare.org

Example

e Optimal growth model

" < #
max E Yt D=1 ) (1)
t,Ct t=0

Gtk=zk 1 +(1 Dk 1 (@)

z=(1 )+ z1+" (3

e The FOC's lead to a system to be solved: equations (2), (3),
andg, =E Gui( Zak *+1 )

e herey =[c;k;z]

Dynare le blocks

Dynare les

e Dynare models are written in .mod les
e use the Matlab editor as if writing an m- le
e when saving, it is important to append the extension .mod'
instead of .m’".
e There are four major blocks in a mod- le
e The preamble, listing the variables and the parameters
e The model, containing the equations
o Initial values for linearization around the steady state
e The variance-covariance matrix for the shocks

e The preamble

Th

variables, example:

var ¢, k, z;

exogenous variables, e.g., shocks:

varexo e;

parameters and their values:

parameters alpha, beta, delta, nu, rho;
alpha=.36; beta=.99; delta=.025; nu=2; rho=.95;
e model (x( n) denotesx; n)

model;

c™(-nu)=beta*c(+1)"(-nu)*(alpha*z(+1)*k (alpha-1)+1 -delta);
c+k=z*k(-1)alpha+(1-delta)*k(-1);

z=(1-rho)+rho*z(-1)+e;

end;

Dynare l