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Basics on Dynare

Logic

N A proposition is a statement which can be declared true or
false without ambiguity

N A propositional (or sentential) function is a statement which
becomes a proposition when we replace the variable with a
speci�ed value

\ 2 + 2 = 4 " is a proposition while \x < 2" is a propositional
function

Propositional functions lead to propositions when the variables
are quanti�ed

for x (in the domain of discourse) is denoted as8
there is anx is denoted as9, if there is uniqueness then we
denote9!

Logic

Connectives (for constructing new propositions)

and (̂ ), or (_), negation (: )

Implication \) "

we writeA ) B if propositionB is true when propositionA is
true, we also say thatA is su�cient condition for B and B is
necessary condition forA
if A ) B and B ) A we writeA , B

Note: : (8x; P(x)) , 9 x; : P(x)

Methods of proof

Direct proof
showing that conclusion (C ) follows from hypothesis (H )

Proof by contrapositive
to showH ) C it is shown that: C ) : H

Proof by contradiction
assume: (H ) C ) and show that: (H ) C ) ^ H is a
contradiction

Proof by construction

Proof by decomposition



Sets

Naive set theory: set is a collection of objects

Membership relationx 2 A (elementx belongs to setA)

set inclusionB � A if x 2 B ) x 2 A, proper inclusion
B � A: B � A and B 6= A

The usual binary operations

union A [ B
intersectionA \ B
complementAc , the set di�erence (complement ofA relative
to B ) of B and A is B n A (elements ofB that are not
elements ofA)
Cartesian productA � B

De Morgan laws(A \ B )c = Ac [ B c and (A [ B )c = Ac \ B c

Sets

Examples

real numbersR, integersZ, positive integersN, rational
numbersQ
real coordinate setsRn : n-times Cartesian product ofR

Power setP(A) or 2A : the set of all subsets ofA

Arbitrary unions and complements, index setI

union overI :
S

i 2 I A i

intersection overI :
T

i 2 I A i

Real coordinate spaces

The setsRn , n � 1 are called real coordinate spaces

we write an elementx = ( x1; : : : ; xn ) 2 Rn with xi 2 R,

i = 1 ; : : : ; n also as a column array (vector)x =

0

B
@

x1
...

xn

1

C
A

Inner product of two elements ofRn : x � y = xT y =
P

i xi yi

(herexT denotes the transpose ofx)

x is orthogonal toy if x � y = 0
note: cos(\ x; y) = x � y=(kxkkyk), wherekxk =

p
x � x

Least upper bound of a set

an elementu 2 R is a least upper bound ofS if x � u for all
x 2 S and for anyv 2 R such thatx � v for all x 2 S it holds
that u � v, we denoteu = sup S

Real coordinate spaces

In�ma and suprema
greatest lower boundinf S respectively assup
axiom: any; 6= S � R with an upper bound has a least upper
bound

Notations

zero vector0 = (0 ; : : : ; 0)
positive vectorsx � 0 , xi � 08i = 1 ; : : : ; n
strictly positive vectorsx � 0 , xi > 08i = 1 ; : : : ; n
positive and strictly positive orthantsRn

+ = f x 2 Rn : x � 0g
and Rn

++ = f x 2 Rn : x � 0g

Functions

N Function f : X 7! Y is a rule that assigns an element
f (x) 2 Y to each elementx 2 X

formally f is a subset ofX � Y such that
8x 2 X 9y 2 Y : (x; y) 2 f and
(x; y) 2 f , 8 z 6= y : (x; z) =2 f
graph of a function isf (x; f (x)) 2 X � Y : x 2 X g
note: for eachx there is uniquey 2 X , if there were several
y's corresponding tox 2 X , f would be a correspondence (set
valued mapping), i.e.,f : X 7! P (Y )
often the notions of map and mapping are used as synonyms
of function

Functions: domain and range

X is the domain of the function andY is the range
note: in these notes the domain is often assumed to beRn ,
although we could in most cases assume the domain to be a
(open) subset ofRn

For A � X the image ofA is f (A)

Pre-image (or inverse image) ofB 2 Y is
f � 1(B ) = f x 2 X : 9y 2 B ; f (x) = yg

N If f (X ) = Y then f is surjection (onto)

N If for eachy 2 Y , f � 1(y) consists of at most one element of
X , then f is injective (one-to-one) mapping ofX to Y

Bijections

N If f is both surjective and injective, then it is a bijection

f is a bijection if and only iff � 1 is a function

Examples:

identity function id(x) = x is a bijection
exponential function is not bijection betweenR and itself but
it is a bijection betweenR and R++

� If X and Y are �nite sets, then there is a bijection betweenX
and Y if and only if the number of elements in the two sets is
the same

this can be taken as the de�nition for the same number of
elements (cardinality of sets)

Economic models

Purposes of economic modeling

explaining how economies work and how economic agents
interact
forming an abstraction of observed data
means of selection of data
other uses: forecasting, policy analysis

Simpli�cation in modeling

choice of variables and relationships relevant for the analysis

Endogenous and exogenous variables

when an economic model involves functions in which some of
the variables are not a�ected by the choice of economic
agents, these variables are called exogenous variables
exogenous variables are �xed parameters in the model
respectively, endogenous variables are those that are a�ected
by economic agents, they are determined by the model



Economic models

Example: model of a consumer

elements: choice of a consumption bundlex 2 Rn
+ over budget

set f x 2 Rn : p � x � I ; x � 0g wherep � 0 and I > 0
utility function u : Rn

+ 7! R (more generally preference
relation)
variablesp and I are exogenous andx is endogenous



Elements of Analysis

Some topology, continuity,
Weierstrass theorem
SB: 10{12, 29, 30.1

Metric spaces

De�nition
A set X is said to be a metric space if for any two pointsp and q
of X there is associated a real numberd(p; q), called the distance
from p to q, such that:

(i) d(p; q) > 0 if p 6= q; d(p; p) = 0 ,

(ii) d(p; q) = d(q; p),

(iii) d(p; q) � d(p; r ) + d(r ; q), for any r 2 X .

any function with these three properties is called a distance
function or a metric

Examples of metrics

Example 1: any setX can be made into a metric space by
de�ning d(x; x) = 0 and d(x; y) = 1 whenx 6= y

Example 2:X = Rn , d(p; q) =
p P n

k=1 jpk � qk j2,
p = ( p1; : : : ; pn ), q = ( q1; : : : ; qn )

Example 3:X = the set of real valued bounded functions
de�ned on a setS, d(f ; g) = sup x2 S jf (x) � g(x)j.

Example 4:X = the set of in�nitely lengthy sequences of real
numbers,d(p; q) = sup k jpk � qk j, p = ( p1; p2; : : :),
q = ( q1; q2; : : :)

Examples of metrics

Why would an economist be interested in metric spaces in
examples 3 and 4?

In some settings the choice variable of a decision maker can be
a function or an in�nite sequence

Application for example 3:S = [0 ; 1] with q 2 S representing
the the quality of a product, functionf (q) = price of quality
q 2 S product

Application for example 4: in�nitely many periods, in each
periods there is price for a product,X = sequences of prices

Vector spaces

De�nition
A set X is a vector space if the sum of two vectors and the
product of a scalar and a vector can be de�ned

the sum\+ "should satisfy the usual properties of a sum:
associativity ((x + y) + z = x + ( y + z)), commutativity
(x + y = y + x), there are identity (zero) and inverse
(-vector) elements

the scalar product satis�es distributivity (a(x + y) = ax + ay,
(a + b)x = ax + bx) and compatibility (a(bx) = ( ab)x)
conditions and there is an identity element (1x = x)

Example 1: real coordinate spaceRn

Example 2:X functions onS, de�ne sum and scalar product
pointwise

Vector spaces

De�nition

Normed vector spaceX , norm k � k (function that measures the
length)

kxk � 0 and kxk = 0 if and only if x = 0

kaxk = jajkxk for all scalarsa

kx + yk � k xk + kyk (triangle inequality)

Example:X = Rn with kxk =
q P n

k=1 x2
k (Euclidean norm),

note d(x; y) = kx � yk is a distance

Open sets

N X metric space,r -neighborhood ofx,
Nr (x) = f y 2 X : d(x; y) < r g

N Interior point, x is an interior point ofX if there isr > 0 such
that Nr (x) � X

we denote the interior of a set as int(S)

De�nition
S � X is an open set if every point ofS is an interior point, i.e.,
S = int(S)

Open sets

1. X is open as well as;

2. any union of open sets is open

3. intersection of �nitely many open sets is open

? these three properties are the de�nition of a topology!

Open sets inRn

Norm equivalence theorem: all norms inRn de�ne the same
topology (the set of open sets)
example 1: strictly positive orthantRn

++
example 2: open half spacesf x 2 Rn : p � x < ag



Closed sets

De�nition

A set S is closed ifSc (complement) is open

Equivalent de�nition
closure ofS: x 2 �S if for all " > 0 we haveN" (x) \ S 6= ;
S is closed if (and only if)S = �S

Examples
positive orthantRn

+
hyperplanesf x 2 Rn : p � x = ag and closed half-spaces
f x 2 Rn : p � x Q ag
level curves of a continuous function:f x 2 Rn : f (x) = � g
(lower and upper) level sets of a continuous function:
f x 2 Rn : f (x) Q � g

N Boundary of a set =@S, x 2 @S if N" (x) \ S 6= ; and
N" (x) \ Sc 6= ;

remark: int(S) = S n @S

Sequences and convergence

A sequencex1; x2; : : :, wherexk 2 X , k = 1 ; 2; : : : (X is a
metric space), is said to converge tox 2 X if for every" > 0,
there is an integerN such thatk � N impliesd(xk ; x) < "

notation for a sequencef xk g
formally a sequence inS is a function on the set
N = f 1; 2; : : :g, if X : N 7! S is a sequence thenX (n) = xn

if f xk g converges tox we denotexk ! x (as k ! 1 ) or
lim

k !1
xk = x

x is called the limit point of the sequence

� A set S is closed if and only iff xkg � S, xk ! x implies that
x 2 S

Compact sets

De�nition
A subsetS of a metric spaceX is said to be compact if every
sequencef xkg � S has a convergent subsequence with a limit
point in S

given an in�nite sequencef kj g of integers with
k1 < k2 < k3 : : : we say thatf xkj g is a subsequence off xkg

compactness can be de�ned for topological spaces (without
metric): S is compact if for arbitrary collection of open sets
f U� g� 2 A � X such thatS �

S
� 2 A U� there is a �nite set

I � A such thatS �
S

� 2 J U�

Compact sets inRn

Theorem
Every compact set of a normed vector space is bounded and closed

S � X is bounded if there isM > 0 such thatkxk � M for
all x 2 S

? For Rn the converse of the previous theorem is also true, i.e.,
every bounded and closed set is compact, i.e.,S � Rn is
compact if and only if it is bounded and closed

? is equivalent to Bolzano-Weierstrass theorem: every
bounded sequence inRn has a convergent subsequence

Continuous functions

De�nition
Let X and Y be metric spaces,f is continuous atp if for every
" > 0 there is a� > 0 such that
dX (x; p) < � =) dY (f (x); f (p)) < "

If f is continuous at anyx 2 X then f is continuous onX

Equivalent de�nitions of continuity

f � 1(V ) is open (closed) for every open (closed) setV 2 X
lim

k !1
f (xk ) = f (p) for any sequencef xk g such that

p = lim
k !1

xk

Lipschitz continuity

X and Y metric spaces,f : X 7! Y is Lipschitz continuous if
the is L � 0 (Lipschitz constant) such that
dY (f (x1); f (x2)) � LdX (x1; x2)

If L 2 (0; 1) the function is called a contraction

f is locally Lipschitz onX if any x 2 X has an open
neighborhood in whichf is Lipschitz

Weierstrass theorem

Theorem
Continuous function over a compact set attains its extrema
(minimum and maximum)

S compact,f continuous onS, then there is�x such that
f (�x) = inf x2 S f (x) (and the same for supremum)



Linear algebra

Matrices, determinant, inversions
SB: 6{9, 26, 27

Introduction

Some economic models have a linear structure

Nonlinear models can be approximated by linear models

System of linear equations, general form

a11x1 + a12x2 + :::: + a1n xn = b1
...

...
...

am1x1 + am2x2 + :::: + amn xn = bm

, Ax = b

aij , bj , i = 1 ; : : : ; m, j = 1 ; : : : ; n, are parameters (exogenous
variables) andx1; : : : ; xn are (endogenous) variables

Example: two products

DemandQd
i = K i P

� i 1
1 P � i 2

2 Y � i , i = 1 ; 2

Pi price of producti , Y income
� ij elasticity of demand of producti for price j
� i income elasticity of producti

SupplyQs
i = M i P


 i
i , i = 1 ; 2


 i is the price elasticity of supply

EquilibriumQd
i = Qs

i , i = 1 ; 2

Notations qd
i = ln Qd

i , qs
i = ln Qs

i , pi = ln Pi , y = ln Y ,
mi = ln M i , ki = ln K i

Example: two products

By taking a logarithm of supply, demand, and the equilibrium
condition we get a linear system

qd
i = ki + � ii pi + � ij pj + � i y;

qs
i = mi + 
 i pi ;

qs
i = qd

i :

after some algebraic manipulation this results to a system of
the form �

a11 a12

a21 a22

� �
p1

p2

�
=

�
b1

b2

�

Vector spaces

De�nition

W � V is a subspace ofV (vector space) if (i)
v; w 2 W ) v + w 2 W and (ii) � v 2 W for all scalars� and
v 2 W

Let V be a vector space andv1; : : : ; vn 2 V and � 1; : : : ; � n

scalars. The expression� 1v1 + � � � + � n vn is called a linear
combination ofv1; : : : ; vn

the set of all linear combination ofv1; : : : ; vn , denoted by
span(v1; : : : ; vn ), this set is a subspace ofV

Linearly dependent vectors

De�nition

Vectorsv1; : : : ; vn 2 V are linearly dependent if there are scalars
� 1; : : : ; � n not all equal to zero such that� 1v1 + � � � + � n vn = 0

If vectors are not linearly dependent they are linearly
independent

If vectorsv1; : : : ; vn are linearly independent and
span(v1; : : : ; vn ) = V then they form a basis ofV

If v 2 V is written asv = � 1v1 + � � � + � n vn , then
(� 1; : : : ; � n ) are the coordinates ofv w.r.t. the given basis

Vector and a�ne spaces

If V has a basis consisting ofn elements we say that the
dimension ofV is n

Any two basis of a vector space have the same number of
elements

Example: coordinate vectorsei , i = 1 ; : : : ; n of Rn

De�nition

Translationx0 + V of a vector spaceV is called an a�ne space
(set)

dimension of an a�ne spacex0 + V is the dimension of the
vector spaceV

Matrices

N m � n (real) matrix A, we denoteA 2 Rm� n , is an array

A =

0

B
B
B
@

a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
...

...
am1 am2 � � � amn

1

C
C
C
A

;

whereaij 2 R, i = 1 ; : : : ; m, j = 1 ; : : : ; m

notation: A i = ( ai 1; : : : ; ain ) (i th row), A j = ( a1j ; : : : ; amj )
(j th column)

Transpose of a matrixAT is de�ned by(AT ) ij = A ji

Special matrices: square, identity matrix (I ), symmetric,
diagonal, upper (lower) triangular



Invertible matrices

Multiplication of matrices,A 2 Rn � m , B 2 Rm� s, the
product AB is de�ned as

(AB ) ij =
nX

k=1

aik bkj = A i � B j

De�nition

A 2 Rn � n is invertible (nonsingular) if there isA � 1 2 Rn � n such
that AA � 1 = A � 1A = I

Some results
Vectorsv1; : : : ; vk 2 Rn with A j = v j , j = 1 : : : ; k are linearly
dependent if and only if the systemAx = 0 has a nonzero
solution x 2 Rk

A 2 Rn � n is nonsingular if and only if its columns (or rows)
are linearly independent

Positive and negative de�nite matrices

De�nition

A symmetric matrixA 2 Rn � n is positive semide�nite ifxT Ax � 0
for all x 2 Rn , and positive de�nite ifxT Ax > 0 for all x 6= 0

matrix A is negative (semi)de�nite if� A is positive
(semi)de�nite

if a matrix is neither neg. or pos. sem. def., then it is
inde�nite

note: x � Ax is a quadratic formand we also talk about
de�niteness of quadratic forms

Linear equations

Linearsystemof equationsAx = b

hereA 2 Rm � n , and x 2 Rn , b 2 Rm

if there are more equations than unknowns,m > n, the system
is said to be over-determined
note: Ax = b , x1A1 + � � � + xn An = b
system is said to be homogeneous ifb = 0

Solutions of linear systems

system is solvable if and only ifb can be expressed as a linear
combination of columns ofA
in other words, system is solvable if and only if
b 2 span(A1; : : : ; An ) = R(A) (range ofA)
the set of solutions ofAx = 0 is called the null space ofA and
it is denoted byN (A)

Linear equations

rank(A) = dimension of the image space
f y 2 Rm : y = Ax ; x 2 Rn g, whereA 2 Rm� n

column rank = dimension of span(A1; : : : ; An )

row rank = dimension of span(A1; : : : ; Am )

rank = column rank = row rank

rank is at mostmin(m; n), if rank(A) = min( m; n) we say
that A has full rank

if rank(A) = m it has full row rank, if rank(A) = n it has full
column rank

Linear mappings

De�nition

A function F : V 7! W is linear ifF (� x + � y) = � F (x) + � F (y)
for all x; y 2 V and �; � 2 R

If a function is of the formF (x) = L(x) + b, where
L : V 7! W is linear andb 2 W , then F is an a�ne function

Example: rotation and scaling

Kernel ofF = ker(F ) = f v 2 V : F (v) = 0g

Image ofF =
Im(F ) = f w 2 W : 9v 2 V ; such thatw = F (v)g

when considering a matrix as a linear function, then kernel
coincides with the null space and image with the range

Linear mappings

Theorem
If F : Rn 7! Rm is a linear function, then there is a matrix
A 2 Rm� n such thatF (x) = Ax for all x 2 Rn

Theorem (Fundamental theorem of linear algebra)

dim(V ) = dim(ker(F )) + dim(Im(F ))

for A 2 Rm� n we haven = dim(N (A)) + rank(A)

Theorem

If x0 is a solution ofAx = b then any other solutionx can can be
written as x = x0 + w wherew 2 N (A)

in other words the set of solutions is the a�ne setx0 + N (A)

Linear equations: number of solutions

Determining the size of the solution set forAx = b with
A 2 Rm� n

if rank(A) = m, then Ax = b has a solution for allb 2 Rm

, A (or f (x) = Ax ) is surjective if and only ifA has full row rank
if n = m, A is surjective if and only if it is injective
if rank(A) < m, then Ax = b has a solution only forb 2 R (A)
if rank(A) = n, then N (A) = f 0g and Ax = b has at most
one solution solution for allb 2 Rm

, A is injective if and only ifN (A) = f 0g
, A is injective if and only if it has full column rank

if rank(A) < n, then if Ax = b has any solution at all, the set
of solutions is an a�ne subspace of dimensionn � rank(A)
pos. (neg.) def. matrix is nonsingular

Determinants

Geometric idea: scale factor for measure

n = 2 , determinant tells how the area is scaled under the linear
transformation,det(A) = a11a22 � a12a21

De�nition (Laplace's formula)

let A ij denote the matrix obtained fromA 2 Rn � n by
deletingi th row and j th column

minor M ij = det( A ij )

cofactor Cij = ( � 1)i + j M ij

for any row (i ) det(A) =
P n

j =1 aij Cij

for any column (j ) det(A) =
P n

i =1 aij Cij

Theorem

A is nonsingular if and only ifdet(A) 6= 0



Cramer's rule

Method for solvingAx = b

let Bi denote the matrix that is obtained fromA by replacing
i th column with b
assumingdet(A) 6= 0 the system has a unique solution that is
given byxi = det( Bi )=det(A)

Example IS-LM analysis

national income model, net national productY , interest rate
r , marginal propensity to saves, marginal e�ciency of capital
a, investmentI = I 0 � ar , money balances neededm,
government spendingG, money supplyMs

sY + ar = I 0 + G

mY � hr = Ms � M 0

Example: IS-LM analysis

Endogenous variablesY and r can be solved by using
Cramer's rule

Y =

�
�
�
�

I 0 + G a
Ms � M 0 � h

�
�
�
�

�
�
�
�
s a
m � h

�
�
�
�

=
(I 0 + G)h + a(M � M 0)

sh + am

r =

�
�
�
�
s I 0 + G
m Ms � M 0

�
�
�
�

�
�
�
�
s a
m � h

�
�
�
�

=
(I 0 + G)m � s(M � M 0)

sh + am

Determinants and de�niteness of a matrix

kth order leading principal minor ofA 2 Rn � n is the
determinant ofk � k matrix obtained fromA by deleting the
last n � k columns andn � k rows

Symmetric matrixA 2 Rn � n is pos. def if and only if all itsn
leading principal minors are strictly positive

Symmetric matrixA 2 Rn � n is neg. def if and only if all itsn
leading principal minors alternate in sign such thatkth order
leading principal minor has the same sign as(� 1)k

Matrix inversion

Main approaches

direct elimination of variables
row reduction (Gaussian elimination and Gauss-Jordan
elimination)
Cramer's rule
more e�cient methods for numerical purposes (LU
decomposition, iterative methods etc.)

Number of operations with Gaussian elimination
n3=3 + n2 � n=3, i.e. O(n3)

theoretical record (this far)O(n2:376)

Note: for solvingAx = b it is not necessary to �ndA � 1

Gaussian elimination

Idea, letei denotei th coordinate vector

�nding solutions xi to equationsAx = ei , i = 1 ; : : : ; n
) A � 1 = ( x1 x2 � � � xn )

Elementary row operations

interchage two rows of a matrix
change a row by adding to it a multiple of another row
multiply each element in a row by the same nonzero number

Form an augmented matrix[AjI ]

when solvingAx = b we use[Ajb] instead
terminology: matrix is in row echelon form if in place ofA we
have triangular matrix, if we have an identity matrix we have a
reduced row echelon form

Gaussian elimination

Forward elimination

using elementary row operations the augmented matrix is
reduced to echelon form (this is Gaussian elimination)
if the result is degenerate (n zeros in the beginning of some
row) there is no inverse (or solution to the equation)
note: rank of a matrix = number of non-zero rows in echelon
form

Back substitution

bring the echelon form matrix to reduced row echelon form by
elem. row operations (if this step is included we call the
algorithm as Gauss-Jordan elimination)

! in place ofA we haveI and in place ofI we haveA � 1

Example

For what values ofb 2 R4 there is a solution forAx = b

whereA =

0

B
B
@

1 2 1 4
0 0 0 2
2 4 2 2
0 2 0 3

1

C
C
A

the rank ofA is three (transformA into echelon form by
Gaussian elimination)
there is a solution whenb 2 R (A)

What about the number of solutions?

Cramer's rule for inversion

The matrix whose(i ; j )-entry isCij (cofactor) is called as the
adjoint of A, adj(A)

Cramer's rule:
A � 1 =

1
det(A)

� adj(A)

Note: in terms of numbers of operatios Cramer's rule is more
demanding than Gaussian elimination



Linear algebra: Eigenvalues

SB 23.1, 23.3, 23.7{23.9

Eigenvalues: The idea

Idea for a square matrixA
can we make a change of variables so that instead ofA we
could consider some other matrix that would be \easier" to
handle?
change of variables: invertible mapping (matrix)P, new
variablesP � 1x
how doesA behave when we introduce the new variables:
take y (new variables) and �nd the correspondingx, i.e.,
x = Py, map this with A, i.e., APy , return back to original
variables, i.e.,P � 1APy (image ofy in new variables)
transformed mappingD = P � 1AP
previous question: can we �ndP such thatD is a diagonal
matrix?
let � i denote the diagonal element in thei th row of D and vi

the i th column vector ofP ! we can deduce thatAvi = � i vi

(becausePD = AP )

Eigenvalues

De�nition
� is the eigenvalue ofA and v 6= 0 is the corresponding
eigenvector ifAv = � v

Note: it is assumedv 6= 0 because0 would always be an
eigenvector (and is therefore not particularly interesting)

Other formulation: � is an eigenvalue if and only ifA � � I is
singular, det(A � � I ) = 0 , which is called the characteristic
equation (polynomial) ofA

Eigenvalues: Example 1

A =
�

2 0
0 3

�
by subtracting2

�
1 0
0 1

�
from A we get

�
0 0
0 1

�
,

which is singular, hence,2 is an eigenvalue and the corresponding
eigenvectorv = ( v1; v2) is obtained by solving�

0 0
0 1

� �
v1

v2

�
=

�
0
0

�
, i.e., vectors of the formv1 6= 0 and v2 = 0

are all eigenvectors corresponding to eigenvalue2

3 is also an eigenvalue becauseA � 3I =
�

� 1 0
0 0

�
is singular

Facts about eigenvalue and eigenvectors

Every non-zero element of the space spanned by eigenvectors
corresponding to an eigenvalue is an eigenvector (each
eigenvector de�nes a subspace/eigenspace of eigenvectors)

) if v is an eigenvector, so is� v for all � 6= 0

The eigenvectors corresponding to di�erent eigenvalues are
linearly independent

Diagonal elements of a diagonal matrix are eigenvalues

Eigenvector determines a direction that is left invariant under
A

Matrix is singular if and only if0 is its eigenvalue

If a matrix is symmetric, it hasn real eigenvalues

If � 1; : : : ; � n are the eigenvalues ofA 2 Rn � n , then
� 1 + � 2 + � � � + � n = trace(A) and � 1 � � 2 � � � � n = det( A).

trace(A) is the sum of diagonal elements ofA

Eigenvalues: Example 2

A =
�

� 1 3
2 0

�
, because this is not a diagonal matrix we need

characteristic equation for �nding the eigenvalues

det(A � � I ) = det
�

� 1 � � 3
2 0� �

�
=

= � (1 + � )( � � ) � 6 = � 2 + � � 6

= ( � + 3)( � � 2)

the eigenvalues are� 1 = � 3 and � 2 = 2 . The eigenvector
corresponding to� 1 can be obtained from

(A � (� 3)I )v =
�

2 3
2 3

� �
v1

v2

�
, e.g., v = ( � 3; 2) is an eigenvector

(like all vectors� v, � 6= 0 ), what is the other eigenvector?

Eigenvalues: Example 2

A =

0

@
1 0 2
0 5 0
3 0 2

1

A , characteristic equation

det(A � � I ) = det

0

@
1 � � 0 2

0 5� � 0
3 0 2� �

1

A =

= (5 � � )( � � 4)(� + 1)

there are three eigenvalues� 1;2;3 = 5 ; 4; � 1, with corresponding

eigenvectorsv1;2;3 =

0

@
0
1
0

1

A ;

0

@
2
0
3

1

A ;

0

@
1
0

� 1

1

A

Eigenvalues: More facts

Characteristic equation is a polynomial of degreen

! there aren eigenvalues some of which may be complex
numbers

in general, �nding the roots ofnth degree polynomial is hard



Diagonalization

De�nition

A 2 Rn � n is diagonalizable if there is an invertible matrixP such
that D = P � 1AP is a diagonal matrix

P can be seen as a change of the basis

Theorem

A 2 Rn � n is diagonalizable if it hasn distinct nonzero eigenvalues

when eigenvalues are distinct and6= 0 , then eigenvectors are
linearly independent

eigenvectors are the columns ofP and eigenvalues are the
diagonal elements ofD

note: matrix can be diagonalizable even when the eigenvalues
are not distinct

Diagonalization: Example

Example 3 (cont'd)

transformationP =

0

@
0 2 1
1 0 0
0 3 � 1

1

A and D =

0

@
5 0 0
0 4 0
0 0 � 1

1

A

Information of eigenvalues

The nature of the linear function de�ned byA can be
sketched by using eigenvalues

if an eigenvalue ofA is positive, thenA scales the vectors in
the direction of the corresponding eigenvector
if an eigenvalue is negative,A reverses the direction of the
corresponding eigenvector and scales

example: how doesA =
�

k1 0
0 k2

�
behave?

if there are no real eigenvectors, there is no directions in which
A behaves as described above

! the matrix turns all the directions (and possibly scales them)

e.g., A =
�

cos(� ) � sin(� )
sin(� ) cos(� )

�
reverses vectors by angle�

(what are the eigenvalues?)

Information of eigenvalues

Investigating the de�niteness of a matrix by using eigenvalues
symmetricA 2 Rn � n is pos.sem.def (neg.sem.def) if and only
if the eigenvalues ofA are � 0 (� 0)
respectively, pos. def. (neg. def.) if eigenvalues are> 0 (< 0)
matrix is inde�nite if and only if it has both positive and
negative eigenvalues



Solving linear di�erence equations

SB 23.2, 23.6

Linear di�erence equations

Dynamical system given byzk+1 = Azk , k = 0 ; 1; : : :, where
A 2 Rn � n and z0 2 Rn is given

model for a discrete time process
eigenvalues can be utilized in solving this kind of systems
later we shall obtain this kind of systems by linearizing
nonlinear di�erence equation

Example 1: calculating compound interests

capital yk , interest rate� , yk +1 = (1 + � )yk

beginning from period0, y1 = (1 + � )y0, y2 = (1 + � )2y0, : : :,
we notice thatyk = (1 + � )k y0 (solution of the di�erence
equation)

Linear di�erence equations

Example 2: model for unemployment
employed (on the average)x, unemployedy
probability of getting a jobp, probability of staying in jobq

xk +1 = qxk + pyk

yk +1 = (1 � q)xk + (1 � p)yk

in matrix form
�

xk +1

yk +1

�
=

�
q p

1 � q 1 � p

� �
xk

yk

�

�rst idea (brute force): let zk +1 = Az k denote the system,
�nd zN corresponding toz0 by iterating the system, i.e.,
zN = AN z0, which means that we needAN

Linear di�erence equations

Observations from the 2d modelzk+1 = Azk , A =
�

a b
c d

�

if A was a diagonal matrix, i.e.,b = c = 0 , then the variables
(components ofz) would beuncoupledand we could solve for
the components separately as in the compound interest
example

! idea: make a transformation of variables which leads to a
diagonal system! use eigenvalues

Solution by diagonalization

Let us consider a di�erence equationzk+1 = Azk with
diagonalizableA

1. transform of variables,Z = P � 1z and z = PZ
old variablesz 2 Rn and new variablesZ 2 Rn

�nd the eigenvalues ofA and the corresponding eigenvectors,
form P from the eigenvectors

2. form a di�erence equation forZ
Z k +1 = P � 1zk +1 = P � 1Az k = P � 1APZ k

note: P � 1AP is a diagonal matrix with eigenvalues in the
diagonal

3. solve the resulting di�erence equation forZ
4. return back to original variables

Example

Let A =
�

1 4
1=2 0

�
and the aim is to solvezk+1 = Azk

Finding the eigenvalues and eigenvectors
characteristic equation
det(A � � I ) = 0 , (1 � � )(0 � � ) � 4 � 1=2 = 0

! we get the eigenvalues� 1;2 = 2 ; � 1

eigenvectors, (i) (A � � 1I ) =
�

� 1 4
1=2 � 2

� �
v1

v2

�
, e.g.

v1 = (4 ; 1)

(ii) (A � � 2I ) =
�

2 4
1=2 1

� �
v1

v2

�
, e.g. v2 = ( � 2; 1)

transformationP =
�

4 � 2
1 1

�
and P � 1 =

�
1=6 1=3

� 1=6 2=3

�

Example

Transform of variables (change of basis)
let us denotez = ( x; y), new variablesX and Y , Z = ( X ; Y ):�

X
Y

�
=

�
1=6 1=3

� 1=6 2=3

� �
x
y

�
and

�
x
y

�
=

�
4 � 2
1 1

� �
X
Y

�

Deriving the di�erence equation forZ

Z k +1 = P � 1APZ k and P � 1AP is a diagonal matrix with

eigenvalues on the diagonal;P � 1AP =
�

2 0
0 � 1

�

in this di�erence equationX and Y are uncoupled!

Example

Solve forZ k : Xk = 2 kX0 and Yk = ( � 1)kY0

Going back to original variables

zk = PZ k =
�

4 � 2
1 1

� �
2kX0

(� 1)kY0

�

=
�

4 � 2kX0 � 2 � (� 1)kY0

2kX0 + ( � 1)kY0

�
= (2 kX0)

�
4
1

�
+ (( � 1)kY0)

�
� 2
1

�

Initial valuesX0 and Y0 can be obtained byZ 0 = P � 1z0



Results for linear systems

Assume thatA is diagonalizable with real eigenvalues
eigenvalues� 1; : : : ; � n and eigenvectorsv1; : : : ; v2

D =

0

B
@

� 1 � � � 0
...

. . .
...

0 � � � � n

1

C
A , in which caseD k =

0

B
@

� k
1 � � � 0
...

. . .
...

0 � � � � k
n

1

C
A

Theorem

When the initial value isz0, the solution of the di�erence equation
is zk = PD kP � 1z0

The result follows by observing thatAk = PD kP � 1 and plug
this into zk = Akz0

note: with the formula forAk we can de�ne, e.g.,
p

A as a
series

Results for linear systems

Theorem

The general solution of the di�erence equationzk+1 = Azk

(zk 2 Rn ) is zk = c1� k
1v1 + c2� k

2v2 + : : : + cn � k
n vn , whereci ,

i = 1 ; : : : ; n, are constants

In the general solutionz0 is unspeci�ed
Regardless of the initial valuez0 the solution is of the previous
form

constantsci , i = 1 : : : ; n, can be solved whenz0 is given;
denotec = ( c1; : : : ; cn ), then c = P � 1z0

Complex eigenvalues

2d intuition
complex eigenvalues means thatA reverses all directions, .i.,e
no direction is mapped to the subspace de�ned by the direction

As in the case of real eigenvalue, we obtain exactly the same
solution for the di�erence equation but now the matricesP,
D will be complex matrices

for n = 2 we get (by using the rules of addition and
multiplication of complex numbers) a general solution in the
form
zk = 2 r k [(c1 cosk� � c2 sink� )u � (c2 cosk� + c1 sink� )v],
wherec1 and c2 are real numbers determined byz0 and the
eigenvalues are� � � i and the eigenvectors areu � iv
complex eigenvalues imply oscillations

Stability of linear systems

De�nition

Origin is (globally asymptotically) stable equilibrium of a system
zk+1 = Azk if zk ! 0 for all z0

note: there may be other equilibria than origin (when?)

Theorem
Origin is stable when the eigenvalues are inside a unit circle in
complex plane, i.e.,r =

p
a2 + b2 < 1 if a � bi are eigenvalues

in case of real eigenvalues, stability is obtained when the
eigenvalues less than1 in absolute values

Markov processes

De�nition
let us assume that there is a �nite number of states
I = f 1; : : : ; ng. Stochastic process is a rule that gives the
probability that the system will be in statei 2 I at time k + 1
given the probabilities of its being in the various states in previous
periods

when (for all i 2 I ) the probability depends only on what
state the system was in at timek the process is called as a
Markov process

Example

let us classify households as urban (1), suburban (2), or rural
(3)
the di�erent classes can be considered as states1; 2; 3

Markov processes: state transitions

Let xi (k) be the probability that in periodk the system is at
state i

State transition probabilitiesmij = probability that in period
k + 1 the state isi when the state wasj in periodk

collecting the probabilities in a Markov matrix

M =

0

B
@

m11 � � � m1n

...
. . .

...
mn 1 � � � mnn

1

C
A

Example (cont'd.)
we may think that the probabilityxi (k) is the portion of
populations in arei in periodk
e.g., m1j = probability of staying urban (j = 1 ) or becoming
urban (j = 2 or j = 3 ),

set M =

0

@
0:75 0:02 0:1
0:2 0:9 0:2
0:05 0:08 0:7

1

A

Markov process as a di�erence equation

Probability that in periodk + 1 the state isi : xi (k + 1) =
Prob(transition from state1 to state i ) � Prob(initial state is
1) + : : : + Prob(transition from staten to state i ) �
Prob(initial state isn) =

P
j mij xj (k)

using the state transition matrix we getx(k + 1) = Mx (k),
i.e.,

0

B
@

x1(k + 1)
...

xn (k + 1)

1

C
A =

0

B
@

m11 � � � m1n
...

. . .
...

mn1 � � � mnn

1

C
A

0

B
@

x1(k)
...

xn (k)

1

C
A

Example

Markov matrix M =
�

0:9 0:4
0:1 0:6

�

Eigenvalues,det(M � � I ) = (0 :9 � � )(0:6 � � ) � 0:1 � 0:4 =
� 2 � (0:9 + 0:6)� + 0 :9 � 0:6 � 0:04 = 0, we get
� 1;2 = (1 :5 �

p
1:52 � 4 � 0:5)=2 = (1 :5 � 0:5)=2 = 1; 0:5

Eigenvectorsv1 = (4 ; 1) and v2 = (1 ; � 1)

General solution

x1(k + 1) = c1 � 4 � 1k + c2 � 1 � 0:5k

x2(k + 1) = c1 � 1 � 1k + c2 � (� 1) � 0:5k



Example

Remarks
one eigenvalue is one and the other is less than one
whenk ! 1 , the limit is c1(4; 1) (direction corresponding to
the eigenvector for eigenvalue1), because the limit should be a
probability distribution4c1 + c1 = 1 , i.e., c1 = 1=5
general result: whenM is a Markov matrix with all
components positive (orM k has positive components for some
k), then one of the eigenvalues is one and the rest are on the
interval (� 1; 1), and the process converges to the limit
distribution determined by the eigenvector corresponding to
the eigenvalue1

! the limit distribution is a stable equilibrium of the di�erence
equation



Linear di�erential equations

SB: 25.2, 25.4

Scalar equations

kth order di�erential equation is an equation of the form
F (y [k]; y [k � 1]; : : : ; y [1]; y; t ) = 0 , wherey [j ] = d j y(t )=dt j

(and y(t ) 2 R)

model for a continuous time process or dynamical system (time
t )
whenF : Rk +1 7! R is linear in �rst k arguments the
di�erential equation is linear

First order scalar equationdy(t )=dt = a(t )y

notation _y = dy(t )=dt
if a(t ) = a 8t the equation is autonomous
general solutiony(t ) = Ce

Rt a(s)ds whereC is an integration
constant

Scalar equations

Second order linear scalar equationa•y + b_y + cy = 0

example: what is the class of utility functions for which
� u00(x)=u0(x) = a (the left hand side is Arrow-Pratt measure
of absolute risk aversion), u00(x) + au0(x) = 0
the solution can be found by using an educated guess (ansatz)
y = e� t

Linear systems

Linear system of di�erential equations is of the form
_x = A(t )x + b(t ), wheret 2 R (time) x(t ); b(t ) 2 Rn , and
A(t ) 2 Rn � n

Homogeneous autonomous systemA(t ) = A and b(t ) = 0 for
all t :

_x1 = a11x1 + : : : + a1n xn
...

_xn = an1x1 + : : : + ann xn

if the question is of �nding the solution for a given initial value
x(t0) = x0 the problem is an initial value problem

Linear systems

From second order scalar equation to a linear system
take a new variablez = _y, when the di�erential equation
becomesa _z + bz + cy = 0 , i.e., we have a pair
_z = � bz=a � cy=a, _y = z
more generally, by introducing new variables we can transform
higher order scalar equations into linear systems

Solution by diagonalization

Theorem
When A is diagonalizable and its eigenvalues� i , i = 1 ; : : : ; n are
distinct and non-zero, the general solution of_x = Ax is
x(t ) = C1e� 1 t v1 + C2e� 2 t v2 + : : : + Cn e� n t vn ; whereCi are
constants, andv i are the eigenvectors corresponding to the
eigenvalues (i = 1 ; : : : ; n)

The solution of the initial value problem is
x(t ) = PeDt P � 1x(0)

note: PeDt P � 1 = eAt , i.e., the solution is of the same form as
for scalar equations (x(t ) 2 R)

Solution by diagonalization

Example: _x = Ax with A =
�

1 4
1 1

�

�nding the eigenvalues:
det(A � � I ) = (1 � � )(1 � � ) � 4 = 0, i.e., � 2 � 2� � 3 = 0,
we get� 1;2 = (2 �

p
22 � 4(� 3))=2 = 1 � 2 = 3; � 1

eigenvectors:(1; 0:5) and (1; � 0:5)
the general solution:

�
x1(t )
x2(t )

�
= c1e3t

�
1

0:5

�
+ c2e� t

�
1

� 0:5

�

what if the initial value wasx(0) = (1 ; 2)?

Stability

Origin x = 0 is the steady state of_x = Ax

De�nition
x = 0 is globally asymptotically stable steady state of_x = Ax , if
the solutionlim t !1 x(t ; x0) = 0 for all x0

herex(t ; x0) is the solution of the system for initial statex0

Stability by using eigenvalues

if the real parts of eigenvalues are negative, then origin is as.
stable
note: some of the eigenvalues may be complex



Multivariate calculus

Di�erentiation, Taylor series, linearization
SB: 14{15, 30

Motivation

Need for nonlinear models

need to model nonlinear phenomena, e.g., decreasing marginal
pro�ts
linear models may lead to optimization problems with no
(bounded) solutions, even when there are solutions, the
solutions may behave against economic intuition (e.g.,
discontinuities)

Nonlinear models are often hard solve analytically

numerical solution
local approach: linearize the model around equilibrium,
optimum or other interesting point! di�erentiation

Di�erentiation in R

De�nition
A function f : R 7! R is di�erentiable at x 2 R if there is a
numberf 0(x) such that

lim
h! 0

jf (x + h) � f (x)j
jhj

= f 0(x)

rewriting we getf (x + h) � f (x) = f 0(x)h + o(h), whereo(h)
is a function such thato(h)=h ! 0 as h ! 0

aroundx, i.e., at x + h, function f behaves as a linear
function f 0(x)h (plus the erroro(h))

f 0(x) is the derivative off at x and f 0(x)h is the di�erential

note: if f is di�erentiable for allx 2 R then f 0(x) is a function

if f 0(x) is di�erentiable at x we obtain the second derivative
f 00(x) (higher order derivatives respectively)

Di�erentiation in Rn

De�nition
A function f : Rn 7! Rm is di�erentiable at x 2 Rn if there is a
linear functionDf (x) : Rn 7! Rm such that

lim
h! 0

kf (x + h) � f (x) � [Df (x)]hk
khk

= 0

Df (x) is the derivative (or total derivative or di�erential) off
at x

note: in the de�nition of the above limit,Df (x) is
independent on howh goes to zero, e.g., forf (x) = jxj we
havef (0 + h) � f (0) = h for all h > 0 but f is not
di�erentiable at x = 0 because forh < 0 we have
f (0 + h) � f (0) = � h, i.e., there is noDf (x) as required in
the de�nition

Di�erentiation in Rn

Theorem
Derivative of a di�erentiable function is unique

Chain rule: supposef maps an open setS � Rn into Rm and
is di�erentiable at x0 2 S, g maps an open set containing
f (S) into Rk and is di�erentiable atf (x0), then
F (x) = g(f (x)) is di�erentiable at x0 and
DF (x0) = Dg(f (x0))Df (x0)

Partial derivatives

Partial derivatives: assume thatf = ( f1; : : : ; fm ), for x 2 Rn ,
i = 1 ; : : : ; m, j = 1 ; : : : ; n we de�ne (provided the limit
exists)

Dj fi (x) = lim
h! 0

fi (x + hej ) � fi (x)
h

;

Dj fi is the derivative offi w.r.t. xj , we call it a partial
derivative off w.r.t xj and write

Dj fi (x) =
@fi (x)

@xj

Partial derivatives

If f is di�erentiable at x, then all partial derivatives exist atx
and the(i ; j )-component ofDf (x) is Dj fi (x), we write
Df (x) = [ Dj fi (x)] and call this matrix as the Jacobian matrix

If partial derivatives are continuous then function is
di�erentiable

When there are several argument vectors with respect to which
we can compute the Jacobian we use the subscript to denote
the variables, e.g.,f (x; a), Jacobian w.r.t. x is Dx f (x; a)

Continuous di�erentiability

A function that has continuous partial derivatives in an open
set containingx is said to be continuously di�erentiable atx

k-times continuously di�erentiable function has continuouskth
order partial derivatives
if f is k-times continuously di�erentiable onS we denote
f 2 C k (S) (note: k can be in�nite)



Gradient of a function

N Gradient off at x is r f (x) = Df (x)T

geometric interpretation:y � f (x̂) = r f (x̂) � (x � x̂) is a
hyperplane inRn +1

r f (x) is perpendicular (orthogonal) to the tangent space of
f y 2 Rn : f (y) = f (x)g (level set)

N Directional derivative off at x to direction v is (if the limit
exists)

f 0(x; v) = lim
h! 0

f (x + hv) � f (x)
h

for di�erentiable f : Rn 7! R we have
f 0(x; v) = r f (x) � v = r f (x)T � v
if we let v with kvk = 1 vary we notice that maximum of
f 0(x; v) is attained atv = r f (x)=kr f (x)k, i.e., r f (x) is the
direction of steepest ascent atx

Taylor's theorem

Motivation: sometimes it is not enough to linearize a
nonlinear system but more information is needed! higher
order approximation is needed

Purpose: approximate function of a single variable around
a 2 R
Notations

k! is the factorial ofk (0! = 1)
f (k ) is the kth derivative off
Rn is the remainder (function) such that there is� on the
interval joiningx and a, such that

Rn (x) =
f (n +1) (� )
(n + 1)!

(x � a)n +1

Taylor's theorem

Theorem
If n � 0 is an integer andf a function which isn times
continuously di�erentiable on the closed interval[a; x] and n + 1
times di�erentiable on the open interval(a; x), then

f (x) =
nX

k=0

f (k) (a)
k!

(x � a)k + Rn (x);

for n = 0 the result is known as the mean value theorem

note: there are also other expressions forRn (x)

Taylor's theorem: multivariate case

Theorem

Let f : Rn 7! R be (m + 1) -times continuously di�erentiable on
�Nr (a) � Rn , for any x 2 Nr (a)

f (x) =
mX

k =0

f ( k ) (a; x � a)
k!

+ Rm (x);

wheref (1) (a; t ) =
P

i Di f (x)t i , f (2) (a; t ) =
P

i ;j Dij f (x)t i t j ,
f (3) (a; t ) =

P
i ;j ;k Dijk f (x)t i t j tk , : : :, and there isz on the

line betweenx and a such that

Rm (x) =
f ( m +1) (z; x � a)

(m + 1)!

note: Dij is the second (partial) derivative off with respect
to xi and xj , Dijk and higher orders respectively

Linearizations

According to Taylor's theorem linear function
f̂ (x) = f (a) + r f (a) � (x � a) approximatesf arounda with
the error termR1(x)

f̂ (x) is the linearization off at a, or a �rst order approximation
if we have a relationy = f (x), then arounda the change ofy
is given by the linear term, i.e.,y � f (a) � r f (a) � (x � a)

In many economic models log-linearization provides more
attractive interpretations than standard (above) linearization

reason: expressions are obtained in terms of elasticities

Example: Arrow-Pratt

Deriving the Arrow-Pratt measure of absolute risk aversion
(ARA)

Finding an approximation for a certain loss that a decision
maker with utility functionu is willing take instead of a lottery

" is random variable zero mean and variance� 2

condition for x at w: E[u(w + ")] = u(w � x)
by Taylor's theoremu(w + ") � u(w) + "u0(w) + "2u00(w)=2
(second order approximation) andu(w � x) � u(w) � xu0(w)
(�rst order approximation)
observing thatE["u0(w) + "2u00(w)=2] = 0 + � 2u00(w)=2 (note
E["2] = � 2)and manipulating gives
x � � (� 2=2)[u00(w)=u0(w)]
the second term is ARA

Log-linearizations

The usual way: make a log-transform and linearize

1. if the original variable isX take log-transformx = log X ,
then X = ex (note X > 0)

2. plug ex in place ofX (if there are several variables do the
same for each of them)

3. linearizef (ex ) aroundX � = ex �

the linearization giveŝf (x) = f (X � ) + X � f 0(X � )(x � x � )
the change ofX is now relative, i.e.,
x � x � = log( X ) � log(X � ) = log( X =X � ) and X =X � = 1+ %
change
the relative change ofy = f (X ) has an approximation
[f (X ) � f (X � )]=f (X � ) � [X � f 0(X � )=f (X � )](x � x � ) =
" (x � x � ), where" is the elasticity

Log-linearizations

Multivariate case:X 2 Rn
++ , and f : Rn

++ 7! R, then
f̂ (x) = f (X � ) +

P
i X �

i [@f (X � )=@X i ](xi � x �
i ) (turn this into

relative changes form!)
Examples

X � X � (1 + x � x � )
resource constraint of the economyY = C + I ,
(y � y � ) � [C � =Y � ](c � c� ) + [ I � =Y � ](i � i � ) (log-linearize
both sides and manipulate)
consumption Euler equation:1 = Rt +1 � [Ct +1 =Ct ]� 
 ,
log-linearization around steady stateR� , C � , i.e., Rt = R�

and Ct +1 = Ct = C � , leads to
(ct � c� ) � � [1=
 ](r t +1 � r � ) + ( ct +1 � c� ) (linear relation)



Hessian matrix

Hessian matrix of a twice di�erentiable functionf : Rn 7! R

the matrix

D 2 f (x) = [ D ij f (x)] =

0

B
B
B
@

@2 f (a)=@x1@x1 � � � @2 f (a)=@x1@xn

@2 f (a)=@x2@x1 � � � @2 f (a)=@x2@xn

... � � �
...

@2 f (a)=@xn @x1 � � � @2 f (a)=@xn @xn

1

C
C
C
A

Taylor's theorem

f (x) = f (a)+ r f (a)�(x� a)+(1 =2)(x� a)�D 2f (a)(x� a)+ R2(x)

this gives second order (quadratic) approximation off at a
whenf 2 C 2(N" (a)) then D 2f (a) is symmetric

Implicit function theorem

When the endogenous (y) and exogenous (x) variables cannot
be separated as inf (x; y) = c the following questions arise

doesf de�ne y as a continuous function ofx (we denote
y(x)) around a given pointx0 such thaty(x0) = y0 and
f (x; y(x)) = c?
how does the change inx a�ect the correspondingy's
(comparative statics)?
note: there has to be as many equations as there are
endogenous variables

The casef : R2 7! R (and f 2 C 1)
assumef (x0; y0) = c, su�cient condition for the existence of
an implicit function is that@f (x0; y0)=@y 6= 0
If y(x) is the implicit function the its derivative atx0 can be
obtained by applying the chain rule

y0(x0) = �
@f (x0; y0)=@x
@f (x0; y0)=@y

Linear implicit function theorem

Theorem

Assume thatA 2 Rm� (n+ m) , and A = ( Ax ; Ay ), with
Ax 2 Rm� n , Ay 2 Rm� m such thatA(x; y) = Ax x + Ay y

(here (x; y) =
�

x
y

�
)

If Ay is invertible we obtain fromA(x; y) = 0 the function
y(x) = � A � 1

y Ax x (i.e., Dy(x) = � A � 1
y Ax )

If we write Ax dx + Ay dy = 0 we obtaindy = � A � 1
y Ax dx,

when only one exogenous variable is changed, then we can use
Cramer's rule to �nddy

Implicit function theorem

Theorem

f : Rn+ m 7! Rm continuously di�erentiable onN" (x0; y0) for some
" > 0 and f (x0; y0) = 0, det(Dy f (x0; y0)) 6= 0 , then there is
� > 0 and functiony(x) 2 C 1(N� (x0)) such that

1. f (x; y(x)) = 0

2. y(x0) = y0

3. Dx y(x0) = � (Dy f (x0; y0)) � 1Dx f (x0; y0)

IFT: Example 1

f (x; y) =
�

f1(x; y)
f2(x; y)

�
, f1(x; y) = y1y2

2 � x1x2 + x2 � 7,

f2(x; y) = y1 � x1=y2 + x2 � 5
Let us take(x0; y0) = ( � 2; 2; 1; 1)
(x0

1 = � 2; x0
2 = 2 ; y0

1 = 1 ; y0
2 = 1 )

Dy f (x0 ; y0) =

 
@f1 ( x 0 ;y 0 )

@y1

@f1 ( x 0 ;y 0 )
@y2

@f2 ( x 0 ;y 0 )
@y1

@f2 ( x 0 ;y 0 )
@y2

!

=
�

(y0
2 )2 2y0

1 y0
2

1 x0
1 =(y0

2 )2

�
=

�
1 2
1 � 2

�

Dx f (x0 ; y0) =

 
@f1 ( x 0 ;y 0 )

@x1

@f1 ( x 0 ;y 0 )
@x2

@f2 ( x 0 ;y 0 )
@x1

@f2 ( x 0 ;y 0 )
@x2

!

=
�

� (x0
2 ) 1 � x0

2

� 1=y0
2 1

�
=

�
� 2 � 1
� 1 1

�

IFT: Example 1

How does change inx1 a�ect the endogenous variablesy?

Dy f (x0 ; y0)
�

dy1

dy2

�
+ Dx1 f (x0 ; y0)dx1 =

�
0
0

�

we get �
1 2
1 � 2

� �
dy1

dy2

�
+

�
� 2
� 1

�
dx1 =

�
0
0

�

by Cramer's rule

dy1 =
det

�
2 2
1 � 2

�

det
�

1 2
1 � 2

� dx1 =
1
2

dx1

dy2 =
det

�
1 2
1 1

�

det
�

1 2
1 � 2

� dx1 =
1
4

dx1

Example 2

Nonlinear IS-LM

Y � C(Y � T ) � I (r ) � G = 0 ;

M (Y ; r ) � M s = 0 ;

C 0(�) 2 (0; 1), I 0(r ); Mr = @M =@r < 0, MY = @M =@Y > 0
(why?)
write this asf (G; T ; M s ; Y ; r ) = 0
assume thatG; T ; M s are exogenous and there is an
equilibrium around which

D(Y ;r ) f (�) =
�

1 � C 0(�) � I 0(r )
MY (�) Mr (�)

�

we get det(D(Y ;r ) f (�)) = [1 � C 0(�)]Mr (�) + I 0(r )MY (�) < 0,
i.e., (Y ; r ) can be de�ned as functions of exogenous variables
around equilibrium

Example 2

What happens to equilibrium whenM s is kept �xed andG
and T are raised equally much (\dT = dG")?

�
1 � C 0(�) � I 0(r )

MY (�) Mr (�)

� �
dY
dr

�
=

�
dG � C 0(�)dT

0

�

Cramer's rule:

dY =dG =
det

�
1 � C 0(�) � I 0(r )

0 Mr (�)

�

det(D(Y ;r ) f (�))
> 0

dr =dG =
det

�
1 � C 0(�) 1 � C 0(�)

MY (�) 0

�

det(D(Y ;r ) f (�))
> 0



Total derivative

Let f : Rn 7! R. What does the following expression mean?

df =
nX

i =1

@f
@xi

dxi (1)

heuristically, we think about relations between in�nitesimals
the bene�t is that we can easily account for relations like
x2

1 = x2x3, i.e., 2x1dx1 = x3dx2 + x2dx3

the expression is total derivative or di�erential form

Formally (1) can be de�ned atp 2 Rn by thinking of xi 's as
functions on a neighborhood ofp and

f 0(p; v) =
nX

i =1

@f
@xi

x0
i (p; v)

Total derivative

The result obtained in example 2 using total derivatives can
be obtained by assuming thatT (G) satis�es T 0(G) = 1 or
T = G + c

�
dY =dG
dr =dG

�
= � [D( Y ;r ) f (G; T (G); M s ; Y ; r )] � 1DG f (�)

= �
1

det(D( Y ;r ) f (G; T (G); M s ; Y ; r ))

�
M r (�) I 0(r )

� MY (�) 1 � C 0(�)

� �
C 0(�) � 1

0

�

Inverse function theorem

Theorem
f : Rn 7! Rn continuously di�erentiable on an open setS. If
det(Df (x0)) 6= 0 then inverse functionf � 1 exists on an open
neighborhood off (x0) (f is a bijection aroundx0) and
Df � 1(f (x0)) = ( Df (x0)) � 1

checking directly that a given nonlinear function is a bijection
is extremely di�cult

for bijectivity we only need to show the non-singularity of the
derivative which is an easy task



Local stability of steady-states

non-linear dynamic systems, stability by linearization
SB: 23.2, 25.4.

Dynamical systems

Dynamical systems

time (discrete or continuous) and a state (in state space)
rule describing the evolution of the state: how future state
follows from past states

Nonlinear systems

! it may be impossible to �nd an analytic solution
! instead of �nding solutions the main interest is in steady states

and their stability

Di�erence equations

A sequencef xkg1
k=0 � Rn satis�es a di�erence equation of

order T if G(xk ; xk� 1; : : : ; xk� T ) = 0 (for all k � T ), where
G : RTn 7! Rn

when a di�erence equation is given in a �rst order form we
have a recursive presentation, i.e.,xk +1 = F (xk )
in this case the solution of a di�erence equation is the
sequence that is obtained from the recursion when the initial
valuex0 is given
the recursion is also called as the state transition equation, law
of motion or dynamic system

Example: National income

periodk national incomeYk satis�es Yk = Ck + Ik + Gk ,
whereCk is the consumers expenditures,Ik is investments,
and Gk is public expenditures

assumeCk = � Yk� 1, Gk = G0 for all k, Ik = � (Ck � Ck� 1)

we obtain a di�erence equation
Yk = � Yk� 1 + � (Ck � Ck� 1) + G0 =
� (1 + � )Yk� 1 � �� Yk� 2 + G0

this is a second order equation

by choosingxk = Yk and zk = Yk� 1 as variables we get the
di�erence equation in the recursive form

xk = � (1 + � )xk� 1 � �� zk� 1 + G0

zk = xk� 1

Other examples

Economic growth
production functionf (Kk ; Lk ), Kk capital, Lk labor, Ck

consumption,� decay of capital
Kk +1 = f (Kk ; Lk ) + (1 � � )Kk � Ck

Natural resources

resource stocksk , harvest of the resourcexk , growth function
f (s), dynamicssk +1 = f (sk ) � xk

First order di�erence equations

De�nition

x � 2 Rn is steady state (equilibrium) of a di�erence equation
xk+1 = F (xk ), F : Rn 7! Rn if x � = F (x � )

non-linear di�erence equation can be linearized around steady
state: F (x) � F (x � ) + DF (x � )(x � x � ), with the change of
variablesz = x � x � we obtain a linear di�erence equation
zk+1 = Azk with A = DF (x � )

! it is possible to analyze local stability of an equilibrium by
analyzing the resulting linear di�erence equation

Stability

De�nition
x � is locally asymptotically stable if there is" > 0 such that
x0 2 N" (x � ) implies thatxk ! x � as k ! 1 , xk = F (xk� 1) for
k � 1

x � is globally (as.) stable ifxk ! x � for all x0

for a linear di�erence equationszk+1 = Azk we are usually
interested in the stability of the origin

Theorem

If I � DF (x � ) is non-singular and the eigenvalues ofDF (x � ) are
inside a unit circle thenx � is locally asymptotically stable

Nonlinear di�erential equations

Consider �rst order autonomous nonlinear system_x = F (x),
whereF : Rn 7! Rn

general solution and the solution to an initial value problem are
de�ned similarly as for linear systems and di�erence equations

De�nition

x � is a steady state (equilibrium) of the system_x = F (x) if
F (x � ) = 0

the equilibrium need not be unique



Stability

De�nition

x � is asymptotically stable equilibrium of_x = F (x) on S � Rn , if
x(t ; x0) ! x � , whent ! 1 for all x0 2 S

Herex(t ; x0) is the solution of the initial value problem forx0

If there is" > 0 such thatx � is stable onN" (x � ) then x � is
locally stable

If x � is stable for all possible initial statesx0, then x � is
globally stable

Example: growth model_k = sf (k) � (1 + � )k, wherek is
wealth per capita andf is a production function

questions: when is there an equilibrium and when is it stable?
the number of equilibria may also be of interest

Analyzing stability

Theorem

the equilibriumx � of a system_x = F (x) is locally asymptotically
stable if the real parts of eigenvalues ofDF (x � ) are negative

if there is one eigenvalue with positive real part, then the
equilibrium is unstable

the qualitative behavior of the solution is characterized by the
linearized system, note:
F (x) � F (x � ) + DF (x � )(x � x � ) = DF (x � )(x � x � ), with
the translation of originy = x � x � we get a linear system
_y = DF (x � )y

for n = 1 the condition is thatF 0(x � ) < 0

Analyzing stability

Example: population model for two species

_x1 = x1(4 � x1 � x2)

_x2 = x2(6 � x2 � 3x1)

�nding the equilibria: (i) (x1; x2) = (0 ; 0), (ii) (x1; x2) = (0 ; 6),
(iii) (x1; x2) = (4 ; 0), (iv) (x1; x2) = (1 ; 3)

computation of the Jacobian
�

4 � 2x1 � x2 � x1

� 3x2 6 � 2x2 � 3x1

�

eigenvalues: (i) � 1;2 = 4 ; 6, (ii) � 1;2 = � 2; � 6, (iii)
� 1;2 = � 4; � 6, (iv) � 1;2 = � 2 �

p
10



Optimization

Introduction, unconstrained optimization
SB: 17, 19.2

Basic concepts

De�nition
Point x � 2 X is a maximum off : X 7! R on S � X if
f (x � ) � f (x) for all x 2 S

Mathematical programming (or optimization) problem: �nd a
maximum (or a minimum) of a given functionf : X 7! R on a
set S � X

function f is the objective function
S is a feasible set, ifx 2 S, then x is a feasible point (solution)
if x 2 S solves the maximization problem, it is an optimum
note: the main tool for the existence optimum is the
Weierstrass theorem

Basic concepts

De�nition
Assume that the domainX is a subset of a metric space. Thenx �

is a local maximum of the problem if there is" > 0 such that
f (x � ) � f (x) for all x 2 N" (x � ) \ S

Local maxima and minima are called (local) extrema

If f (x � ) > f (x) for all x 2 N" (x � ) \ S and x 6= x � , then x � is
strict local maximum (strict global maximum respectively)

Notations

The maximization problem is denoted asmaxx2 S f (x) and the
minimization problem asminx2 S f (x)

If f is maximized overx while y are �xed (exogenous) we
denote: maxx f (x; y)

Note: if x is a minimum off , then it is a maximum of� f (x)
(wlog we may consider maximization problems)

If the supremum off overS is attained at a pointx � , then
f (x � ) = max x2 S f (x) = sup x2 S f (x)

Optimization problems

When S = X , i.e., the feasible set is the whole domain off ,
the problem is unconstrained, otherwise the problem is
constrained

The general optimization problem (forX � Rn ) is a nonlinear
programming problem
When the problem involves time, it is a dynamic optimization
problem

when there is no time involved, the problem is static

Optimization problems: NLP

Nonlinear programming problems where
S = f x 2 Rn : g1(x) � 0; : : : ; gk (x) � 0 and
h1(x) = 0 ; : : : ; hm (x) = 0 g, gi : Rn 7! R, hj : Rn 7! R,
i = 1 ; : : : ; k, j = 1 ; : : : ; m

the inequalitiesg1(x) � 0; : : : ; gk (x) � 0 are inequality
constraints (note thatgi (x) � 0 , � gi (x) � 0), and the
constraintsh1(x) = 0 ; : : : ; hm (x) = 0 are equality constraints
if f , g1; : : : ; gk , h1; : : : ; hm are linear (or a�ne) the problem is
a linear programming problem

Unconstrained problems: FOC

Theorem
Let X � Rn be an open set, andf : X 7! R be a di�erentiable
function onX . If x � is a local extremum off , then r f (x � ) = 0.

Note: the converse is not necessarily true, i.e.,r f (x � ) = 0 is
a necessary but not su�cient optimality condition, we call
r f (x � ) = 0 as a �rst order optimality condition

The points at whichr f (x) = 0 are critical points off

For n = 1 the FOC is simplyf 0(x � ) = 0

Second order optimality conditions

f twice di�erentiable onX

2nd order necessary condition: ifx � is a local maximum, then
D 2f (x � ) is negative semide�nite
2nd order su�cient condition (SOC): ifx � is a critical point
and D 2f (x � ) is neg.def. thenx � is a strict local maximum
note: for n = 1 , D 2f (x � ) = f 00(x � ), i.e., f 00(x � ) � 0 (i.e.,
f 0(x � ) decreasing atx � )
note: for minimization problem replace neg. (sem.) def. with
pos. sem. def.



Least squares problems

Data, observations
(y1; x11; x21; : : : ; xk1); : : : ; (yn ; x1n ; : : : ; xkn )

Linear modelyi = � 1x1i + � � � + � kxki + " i

independent and identically distributed observation error" i ,
i = 1 ; : : : ; n
unknown parameter� (vector)
more generally we may have a (nonlinear) model
yi = f (x i ; � ) + " i , where� is a parameter vector
the linear model can be written as a systemy = X � + " ,
wherey; " 2 Rn , X 2 Rn � k and � 2 Rk

Least squares problems

Least squares problemmin
�

(y � X � )T (y � X � )

Solution by FOC and SOC

FOC: r f (� ) = r � (y � X � )T (y � X � ) = 0, now
r f (� ) = � 2X T y + 2X T X � , solving for� gives
� = ( X T X ) � 1X T y
SOC:D 2f (� ) = 2 X T X which is pos. sem. def. (why?)

Envelope theorem

Consider a problemmaxx2 Rn f (x; a), wherea 2 Rm is
exogenous

How does the optimalf vary asa is changed?

what are partial derivatives of@f (x(a); a)=@ai , i = 1 ; : : : ; m?
i.e., we are interested in comparative statics of the value
function v(a) = max x f (x; a)

Envelope theorem

Theorem
Assume that the optimum off is unique in the neighborhood of
a� , f is di�erentiable at (x(a� ); a� ), and x(a) is di�erentiable
function at a� . It follows that dv(a� )=dai = @f (x(a� ); a� )=@ai for
all i = 1 ; : : : ; m, wherev is the value function

we denoteDv(a� ) = Da f (x(a� ); a� ) (total derivative ofv is
the partial derivative off w.r.t. a)

when isx(a) a di�erentiable function?

it is possible to get qualitative results without actually �nding
x(a)

partial derivatives are easier to compute than total derivatives

Example

f (x; a) = � x2 + 2ax + 4a2

Optimum by setting gradient to zero:x(a) = a

Plug the solution into the objective function are di�erentiate
w.r.t a

g(a) = f (x(a); a) = 5 a2, hence
dg(a)=da = df (x(a); a)=da = 10a

Same result by using the envelope theorem
@f (x(a); a)=@a = 2x + 8a = 10a

Example: marginal costs

Assume that a �rm minimizes costs of labor (L) and capital
(K ) when producing a given amountq

production functionf (K ; L), i.e., output q = f (K ; L)
unit costs of capital and laborwL and wK

problemminL ;K wL L + wK K s.t. q = f (K ; L)
eliminate labor fromq = f (K ; L) to obtain (short run optimal)
cost functionc(K ; q)

In the long run capital is chosen such that the costs are
minimized) K (q), in the short run capital is �xed

c(K ; q) is the short run optimal cost

Long run and short run marginal costs are the same

by the envelope theoremdc(K (q); q)=dq = @c(K (q); q)=@q

Example: marginal costs

Test with production function
p

KL , whereL is labor

set unit costs of labor and capital = 1
cost of inputK (capital) and L (labor) is K + L, production
function

p
KL , i.e., output q =

p
KL , from which we get

L = q2=K , and c(K ; q) = q2=K + K
long run optimumK (q) = q, at which c(K (q); q) = 2 q and
dc(K (q); q)=dq = 2

Observations:

the graph of a functionc(K ; q) is abovec(K (q); q) except at
K = q (optimum)
at K = q the tangent of the functions are the same



Convex analysis

Convex sets, concave and quasiconcave functions
SB: 21, 22.1

Convex sets

De�nition
Let V be a vector space. The setX � V is convex if
� x + (1 � � )y 2 X 8x; y 2 X and � 2 [0; 1]

vector � x + (1 � � )y is a convex combination ofx and y

X is convex if and only ify =
P k

i =1 � i x i 2 X for all k � 2,
x i 2 X , i = 1 ; : : : ; k,

P
i � i = 1 and � i 2 [0; 1], i = 1 ; : : : ; k,

y is called a convex combination ofx1; : : : ; xk

a setX is strictly convex ifX is convex and
� x + (1 � � )y =2 @X for any x; y 2 X , x 6= y, � 2 (0; 1)

Convexity

Operations that preserve convexity
Closure and interior of a convex set are convex
Intersection of convex sets is convex
Linear map of a convex set is convex
Cartesian product of convex sets is convex

Theorem

(Minimum distance theorem) LetS � Rn be a closed convex set
and y =2 S. Then there is a unique point�x 2 S with minimum
distance fromy. Necessary and su�cient condition for�x to be the
minimizer is(y � �x) � (x � �x) � 0 for all x 2 S

Convexity

Examples
hyperplanesp � x = c, (open and closed) half spacesp � x � c,
(also p � x < c, p � x > c), polyhedral sets = intersections of
half spaces, ellipsoidsx � Vx � c (V pos.def.), solutions of
linear equations, simplex
Note: setsf xg, ; , and Rn are convex

� Every closed convex set can be presented as an intersection of
closed half spaces

Convex and concave functions

De�nition
Let V be a vector space andX � V a convex subset ofV ,
function f : X 7! R is concave if

f (� x + (1 � � )y) � � f (x) + (1 � � )f (y) 8x; y 2 X ; � 2 [0; 1]

Function f is strictly concave if

f (� x+(1 � � )y) > � f (x)+(1 � � )f (y) 8x; y 2 X ; x 6= y; � 2 (0; 1)

If � f is (strictly) concave thenf is (strictly) convex

Concave functions

Hypograph of a functionf : Rn 7! R is
hypf = f (x; � ) 2 Rn+1 : f (x) � � g

hypf is the set of point below the graph of a function,
respectively the set above the graph is the epigraph (epif )
f is concave (convex) function if and only if hypf (epif ) is a
convex set

Examples of concave functions
ln(x), � ex , x � when� 2 [0; 1], �j xjp whenp � 1,
minf x1; : : : ; xn g, x � Vx whenV is neg.sem.def

Properties of concave functions

Upper level setsU (f ; � ) = f x 2 X : f (x) � � g are convex
sets

Concave function is locally Lipschitz continuous on the
interior of its domain

Extra: concave function is almost everywhere di�erentiable on
the interior of its domain

If V = Rn and a function is bounded, convexity is equivalent
to f (� x + (1 � � )y) � � f (x) + (1 � � )f (y) for some� 2 (0; 1)

f is concave if and only ifgx;y (� ) = f (� x + (1 � � )y) is
concave for allx and y on [0; 1]

Operations that preserve concavity

Positively weighted sum of concave functions
P

wi fi (x),
wi � 0, is concave

Minimum g(x) = min � 2 A f (x; � ) is concave whenf (x; � ) is
concave for all� 2 A

Composite functionf (x) = h(g(x)) ,
g = ( g1; : : : ; gm ) : Rn 7! Rm , h : Rm 7! R, f s concave in the
following cases

1. whenh is concave, non-decreasing andgi is concave for alli

2. whenh is concave, non-increasing andgi is convex for alli

3. whenh is concave andg is linear/a�ne ( g(x) = Ax + b)



Examples

Model of a �rm

input vector x 2 Rn

production functionf : Rn
+ 7! R+ = f y 2 R : y � 0g that is

concave and in increasing in all its arguments
cost functionc : Rn

+ 7! R, convex and increasing in all its
arguments
price p > 0, pro�ts pf (x) � c(x) de�ned for x � 0

Expenditure functione(p) = min x2 X p � x is concave
p 2 Rn is a vector of prices of inputsx 2 X � Rn

+ , and X
convex

Di�erentiable concave functions

Graph of a concave function is below tangent plane:

f (y) � f (x) � r f (x) � (y � x); 8x; y 2 X

Theorem

Di�erentiable function is (strictly) concave if and only if its
gradient is (strictly) monotone

for f : R 7! R, f 0(x) is decreasing
for f : Rn 7! R we have[r f (x) � r f (y)] � (x � y) � 0 for all
x; y 2 Rn

strict monotonicity: strict inequality forx 6= y

Di�erentiable concave functions

Theorem
Twice di�erentiable functionf is concave if and only if its Hessian
matrix D 2f (x) is negative semide�nite (on the domain off )

note 1: this is the main tool for analyzing concavity

note 2: negative semide�niteness implies monotonicity ofr f

note 3: positive (semi)de�niteness, convexity

note 4: forf : R 7! R concavity, f 00(x) non-positive for allx

Hessian matrix of a strictly concave function is not necessarily
neg. nef. but if it is, then the function is strictly concave

Concave optimization

An optimization problemmaxx2 S f (x) is concave (or convex)
if f is a concave function andS is a convex set

whenS = f x 2 Rn : g(x) � 0; h(x) = 0g, and
g = ( g1; : : : ; gk ), h(x) = Ax + b, then S is a convex set when
gi (x), i = 1 ; : : : ; k, are convex functions

Theorem
Local maximum of a concave function is a global maximum

�rst order conditions give an optimum

Concave optimization

Theorem
The set of solutions of a concave problem is a convex set

The set of maximizers overS is denoted asarg maxx2 S f (x)

If f is strictly concave and the problem has a solution then it
is unique

Note: concavity does not guarantee existence

Theorem
Whenf is concave and di�erentiable, thenx � is an optimum if and
only if r f (x � ) � (x � x � ) � 0 for all x 2 S

Variational inequality of concave optimization

Necessary and su�cient optimality condition for a concave
problem

Parametric optimization and concavity

Function v(a) = max x2 X (a) f (x; a) (value function) is
concave whenf is concave in(x; a) and X (a) is graph convex
correspondence

Graph convexity:
� X (a1) + (1 � � )X (a2) � X (� a1 + (1 � � )a2)

e.g., X (a) = f x 2 Rn : gi (x; a) � 0; i = 1 ; : : : ; kg is graph
convex whengi are convex functions in(x; a)

Quasiconcave functions

De�nition
Let X be a convex subset of a vector spaceV , function
f : X 7! R is quasiconcave iff (� x + (1 � � )y) � minf f (x); f (y)g
8x; y 2 X and � 2 [0; 1]

Strict quasiconcavity:f (� x + (1 � � )y) > minf f (x); f (y)g,
x 6= y, � 2 (0; 1)

(Strict) quasiconcavity is equivalent withU (f ; � ) (upper level
set) being a (strictly) convex set for all� 2 R

If � f is (strictly) quasiconcave, thenf is (strictly) quasiconvex

Quasiconcave functions

Properties of a quasiconcave functionf : Rn 7! R

1. a di�erentiable functionf on an open set convex setX is
quasiconcave if and only iff (y) � f (x) ) r f (x) � (y � x) � 0
for all x; y 2 X

2. if y � r f (x) = 0 ) y � D 2f (x)y � 0 for all x; y 2 X , then f is
quasiconcave (for strictly quasiconcave functions we need
\ < 0")



Quasiconcavity and transformations

Monotone transformation of a quasiconcave function is
quasiconcave

i.e., f (x) = h(g(x)) , whereg : Rn 7! R is quasiconcave and
h : R 7! R is (strictly) increasing

) if a function is a monotone transformation of a concave
function then it is quasiconcave

If a monotone transformation of a function is concave then
the original function is quasiconcave

if h(f (x)) is concave with increasingh, then f is quasiconcave
important speci�c case:log-concave functions,h = ln

Quasiconcavity and transformations

Other operations that preserve quasiconcavity

minimization: g(x) = min y f (x; y) (f quasiconcave as a
function of x)
composite functionf (x) = h(Ax + b) is quasiconcave, whenh
is quasiconcave (herex 2 Rn and Ax + b 2 Rm )

Examples

Cobb-Douglas utility functionsU (x) = x � 1
1 � � � x � n

n , when
x � 0 and � i > 0, i = 1 ; : : : ; n
C-D functions arelog-concave, they are concave whenP

i � i < 1 and � i 2 (0; 1) for all i
CES utility functionsU (x) = [

P
i (� i x r

i )]1=r , whenx � 0,
� i > 0, i = 1 ; : : : ; n, r � 1

Utility functions

Preference relations are often described by utility functions

decision maker prefersa to b if u(a) � u(b)
in the ordinal theory of utility the measurement unit of utility
is not essential; increasing transformation ofu describes the
same preference relation

N A property of a function that can (cannot) be preserved by an
increasing transformation is an ordinal (cardinal) property

quasiconcavity is an ordinal while concavity is a cardinal
property
diminishing marginal rate of substitution, i.e.,
MRSxy = [ @u(x; y)=@x]=[@u(x; y)=@y] (marginal rate of
substitution betweenx and y) decreasing, is an ordinal
property
diminishing marginal utility, i.e.,MUx = @u(x; y)=@x
decreasing, is a cardinal property

Quasiconcave optimization

maxx2 S f (x) is a quasiconcave optimization problem whenf
is a quasiconcave function andS is a convex set

Quasiconcave optimization problem may have local optima
which are not global optima

arg maxx 2 S f (x) is a convex set
if f is strictly quasiconcave and the problem has a global
optimum, then it is unique

Theorem

If r f (x) � (y � x) < 0 for all y 2 S, y 6= x, then x 2 S is a global
maximum of a quasiconcave optimization problemmaxx2 S f (x)

v(a) = max x2 S f (x; a) is quasiconcave whenf is
quasiconcave in(x; a) and S is a convex set

Example: consumer's problem

Variables

n commodities,xi amount of commodityi , price pi , incomeI

Objective function = utility function u(x)
u is usually assumed to be quasiconcave

Constraints
budget constraintp1x1 + p2x2 + : : : + pn xn � I and
non-negativityxi � 0, i = 1 ; : : : ; n

Consumer's problem: for givenp and I �nd the utility
maximizing commodity bundle

the solution is the consumer's demand, if it is unique then it is
a demand function

Questions: existence of demand functions, continuity, etc



Nonlinear programming

constrained optimization
SB: 18

NLP problems

NLP problemmax f (x) s.t. (subject to) gi (x) � 0
i = 1 : : : ; k, hj (x) = 0 , j = 1 ; : : : ; m

we also denoteg(x) � 0 (inequality constraint in vector form)
and h(x) = 0 (equality constraints)
if x satis�es the constraints it is feasible
if gi (x) = 0 , then i th inequality constraint is active (binding)
at x
when we denotemaxx f (x; a) we refer to a problem in whicha
is exogenous

Inequality constraints into equality constraints

Adding slack variables
way to transform an inequality constraint to an equality
constraint, e.g., by adding variables we can write a problem
max f (x) s.t. g(x) � 0 to equality constrained problem
max(x ;s) f (x) s.t. g(x) + s2 = 0
with this trick it is actually possible to derive most of the
results for inequality constrained problems from the theory of
equality constrained problems, otherwise the trick is seldom of
any use

Note: replacing equality constraint with two inequality
constraints does not work (the problem is that the Jacobians
of the constraints become linearly dependent)

In many inequality constrained problems, it is possible to
detect active constraints from the structure of the problem

Nonlinear programming

Example: consumer's problem
maxx u(x) s.t. p1x1 + : : : + pn xn � I and xi � 0,
i = 1 ; ; : : : ; n
whenu is increasing in all of its arguments, then budget
constraint is active at optimum (when prices are positive).
Moreover, oftenu(x) = 0 whenxi = 0 for somei and
U (x) > 0 whenx � 0, which means that at optimumx � 0

Feasible points of inequality constrained problems

if gi (x) = 0 for somei = 1 ; : : : ; k, k > 1, we say thatx is a
corner point, otherwisex is an interior point
respectively, whenx is an optimum, we say that it is a corner
solution or an interior solution

First order conditions: assumptions

Lagrange function
L(x; �; � ) = f (x) �

P
i � i gi (x) �

P
j � j hj (x)

� 2 Rk is a vector of Lagrange multipliers for inequality
constraints and� 2 Rm contains the Lagrange multipliers of
equality constraints

Assumptions:x � is a local optimum,f , g, h are di�erentiable
at x � , k0 �rst inequality constraints are active atx � , the
following matrix has full rank

0

B
B
B
B
B
B
B
B
B
B
@

@g1 ( x � )
@x1

� � � @g1 ( x � )
@xn

...
. . .

...
@gk0 ( x � )

@x1
� � �

@gk0 ( x � )

@xn
@h1 ( x � )

@x1
� � � @h1 ( x � )

@xn
...

. . .
...

@hm ( x � )
@x1

� � � @hm ( x � )
@xn

1

C
C
C
C
C
C
C
C
C
C
A

First order conditions

Result: there are Lagrange multipliers such that

@L(x � ; �; � )
@xi

= 0 8i = 1 ; : : : ; n; (1)

� i gi (x
� ) = 0 8i = 1 ; : : : ; k; (2)

gi (x
� ) � 0 8i = 1 ; : : : ; k; (3)

hi (x
� ) = 0 8i = 1 ; : : : ; m; (4)

� i � 0 8i = 1 ; : : : ; k (5)

In vector notation:

r L(x � ; �; � ) = 0;

� � g(x � ) = 0 ;

g(x � ) � 0;

h(x � ) = 0;

� � 0

Remarks on FOCs

Necessary optimality condition

known as Karush-Kuhn-Tucker conditions
for minimization problems the condition is otherwise the same
but the sign of Lagrange multiplier of inequality constraints
(\ � "-constraints) is changed
not all points satisfying FOCs are (local) optima

Works also when there are no constraints at all, or either only
equality or inequality constraints

FOCs: nomenclature

The rank condition is known as non-degeneracy constraint
quali�cation (NDCQ)

assumingk0 �rst inequality constraints active was done to
simplify notation, more generally the matrix can be formed by
collecting the active constraints

(1) Lagrangian optimality (x � is a critical point ofL)

(2) complementary slackness

(3){(4) primal feasibility

(5) dual feasibility



Geometric interpretation

Problemmax f (x) s.t. g(x) � 0

At local maximum,x � , there is no feasible ascent direction

d 6= 0 is a feasible direction atx � if there is �� such that
g(x � + � d) � 0 for � 2 (0; �� )
d 6= 0 is an ascent direction atx � if there is �� such that
f (x � + � d) > f (x � ) for all � 2 (0; �� )

) at local maximum there is nod 6= 0 such that r g(x � ) � d < 0
and r f (x � ) � d > 0
whenr g(x � ) 6= 0 this is equivalent to FOCs

Cookbook: solving FOCs

Method 1 (brute force): �nd all the points that satisfy the
FOCs

for equality constrained problems simply �nd all solutions of
the system of equations determined by FOCs
when there are inequality constraints, go through all possible
combinations of active constraints, if some combination is not
possible it will imply wrong sign for one of the Lagrange
multipliers

Method 2: make an educated guess of active constraints (or
even guess the solution)

check your guess by plugging it into FOCs

Example 1

Problemmaxx1 � x2
2 s.t. x2

1 + x2
2 = 4 , x1; x2 � 0

Lagrangian
L(x; �; � ) = x1 � x2

2 + � 1x1 + � 2x2 � � (x2
1 + x2

2 � 4)

FOCs:

@L=@x1 = 1 + � 1 � 2� x1 = 0

@L=@x2 = � 2x2 + � 2 � 2� x2 = 0

x2
1 + x2

2 = 4

xi � 0; i = 1 ; 2

� i xi = 0 ; i = 1 ; 2

� i � 0; i = 1 ; 2

Example 1

Deducing the active constraints

both inequality constraints cannot be active at the same time
if � 1 = � 2 = 0 (e.g., none of the constraints is active) then
from @L=@x2 = 0 we get� = � 1 () x1 = � 1=2, infeasible!)
or x2 = 0 () x1 = 2 ; � = 1=4)
Are there other solutions than
(x1; x2; � 1; � 2; � ) = (2 ; 0; 0; 0; 1=4)? If there were thenx2 > 0
and � 2 = 0 , by the constraints� = � 1 which leads to
infeasiblex1, hence there are no other solutions

Example 2

f (x) = � (x1 � 1)2 � (x2 � 1)2 and h(x) = x2
1 + x2

2 � 8

Geometric interpretation: minimize the distance from(1; 1) to
circle h(x) = 0

By geometric intuition the solution seems to be(2; 2)

FOCs: equality constraint and� 2(x1 � 1) + 2 � x1 = 0 ,
� 2(x2 � 1) � 2� x2 = 0 , by choosing� = 1=2 the FOCs are
satis�ed (2; 2)

Example: Cobb-Douglas consumer

Two commodities, Cobb-Douglas utility function
U (x1; x2) = xa

1 x1� a
2 and budget constrainth(x) = 0 , where

h(x1; x2) = p1x1 + p2x2 � I

L(x; � ) = xa
1 x1� a

2 � � (p1x1 + p2x2 � I )

NDCQ holds forp 6= 0

FOC: budget constraint andaxa� 1
1 x1� a

2 � � p1 = 0 ,
(1 � a)xa

1 x � a
2 � � p2 = 0

By eliminating� we get
(1 � a)(x1=x2)a � a(x1=x2)a� 1(p2=p1) = 0 , i.e.,
p1(1 � a) � p2a(x1=x2) � 1 = 0 and eventually
p1x1(1 � a) � p2x2a = 0

note: we assumex1; x2 > 0 at optimum

Example: Cobb-Douglas consumer

Solving the pair of equations: budget equation and the above
condition

from budget equation we getp1x1 = I � p2x2, and by plugging
this into the other we obtainx2 = (1 � a)I =p2 and x1 = aI =p1

What can you say about the optimality of the solution?

More general FOCs

FOCs can be formulated for problems where the optimized
variables are in�nite dimensional

formally this works only when the underlying space of
optimized variables has particular structure

Example: consumer's life cycle consumption problem

max
1X

k=0

� ku(ck ), � 2 (0; 1)

periodk consumptionck

initial wealth (exogenous)w0, interest rater , dynamics
wk +1 = (1 + r )(wk � ck ), wherewk is periodk wealth
di�erence equation for wealth is considered as a constraint



Example (cont'd)

FOCs

Lagrangian

L(c; w; � ) =
X

k � 0

�
� k u(ck ) � � k (wk +1 � (1 + r )(wk � ck ))

�

note: optimized variables areck , wk +1 , k � 0, i.e., there are
in�nitely many variables to be optimized
di�erentiate L w.r.t all variables (ck 's and wk 's) and set the
di�erential to zero

� k u0(ck ) + � k (1 + r )( � 1) = 0 ( di�. L w.r.t ck )

(1 + r )� k � � k � 1 = 0 ( di�. L w.r.t wk ; k � 1)

wk +1 = (1 + r )(wk � ck ); k � 0

FOCs are a di�erence equation forck , ak and � k , k = 0 ; 1; : : :
note: we can eliminate� k 's



Comparative statics

Constrained optimization,
interpretation of Lagrange multipliers,

generalized envelope theorem
SB: 19.1, 19.2

Introduction

How does the solution of an optimization problem change
when exogenous variables change?

example: how does consumer's optimum change when the
income is increased?

Optimization problemmax f (x; a) s.t. h(x; a) = 0, wherea
is exogenous

the solutionx (or arg max ) will depend on exogenous
variables, i.e., it is a correspondence (or function)x(a)
how doesx(a) change as a function ofa, what about
v(a) = f (x(a); a)?

Interpretation of Lagrange multipliers

Theorem

Assume thatx(a) solvesmax f (x) s.t. h(x) = a, where
h : Rn 7! Rm , and x(a) and � (a) (Lagrange multipliers
corresponding tox(a)) are di�erentiable functions on an open set
of exogenous variablesa. Assume also that the �rst order
conditions with NDCQ are satis�ed atx(a), � (a). Then
r v(a) = � (a), i.e., df (x(a))=dai = � i (a).

Note: the result tells the change of optimalf for small
changes of exogenous variables

Lagrange multipliers can be interpreted as shadow prices!

Why these assumptions? When can we be certain thatx(a) is
di�erentiable?

Interpretation of Lagrange multipliers

When we think the right hand side ofh(x) = a as an amount
of resource, thendf (x(a))=dai tells how the optimum
changes as the amount of resourcei changes

Sketch for a proof:

let v denote the value function, by chain rule
r a v(a) = [ Da x(a)]T r x f (x(a))
Lagrangian optimalityr x f (x(a)) � [Dx h(x(a))]T � (a) = 0,
i.e., r x f (x(a)) = [ Dx h(x(a))]T � (a)
by di�erentiating h(x) = a, we get
Da [h(x(a))] = I , Dx h(x(a))Da x(a) = I (by chain rule)
combining the results
r a v(a) = [ Da x(a)]T [Dx h(x(a))]T � (a) = I T � (a) = � (a)

Interpretation of Lagrange multipliers

Theorem

maxx f (x) s.t. g(x) � a and assumptions otherwise as before and
a has an open neighborhood such that the active constraints
remain the same on that neighborhood. Then
df (x(a))=dai = � i (a), where� i (a) is the Lagrange multiplier
corresponding toi th constraint.

example:maxx1 + x2 s.t. x2
1 + x2

2 � a and x2 � 1, a > 0.
What happens ata = 2?

Generalized envelope theorem

Theorem

maxx f (x; a) s.t. h(x; a) = 0, a 2 R. Assume that that the
solution of the problemx(a), � (a) are di�erentiable (on an open
neighborhood ofa) and the FOCs are satis�ed and NDCQ holds at
optimum. It follows that df (x(a); a)=da = @L(x(a); � (a); a)=@a

Combination of envelope theorem and the result on the
interpretation of Lagrange multipliers

Example 1

f (x1; x2) = x2
1 x2 and h(x1; x2) = 2 x2

1 + x2
2 � a

The problem can be solved by eliminating the other variable
from the constrainth(x) = 0 , we get an unconstrained
problem

this trick works more generally, but usually elimination of
variables is di�cult, note also that if there are inequality
constraints they have to be taken into account after the
elimination
by eliminatingx2

1 , i.e., x2
1 = ( a � x2

2 )=2 and plugging this into
the objective function we getmaxx2(a � x2

2 )=2
di�erentiating and setting the derivative to zero we get
a � 3x2

2 = 0 , i.e., x2 = �
p

a=3 and x1 = �
p

a=3, the
optimum isx = (

p
a=3;

p
a=3)

Example 1

The drawback of elimination approach is that it does not
produce Lagrange multiplier for the constrainth(x) = 0 , to
get the Lagrange multiplier we have to formulate FOCs
@f (x)=@x1 = 2x1x2 and @h(x)=@x1 = 4x1, hence,
� (a) = x2(a)=2 =

p
a=12

Try e.g., a1 = 3 and a2 = 3 :3, according to theory
[f (x(a2)) � f (x(a1))]=[a2 � a1] � � (a1), now
f (x(a2)) � f (x(a1)) � 0:1537, � (a1) = 0 :5, which gives
� (a1)(a2 � a1) = 0 :3 � 0:5 = 0:15, the di�erence is in the third
decimal



Example 2

Output is produced of two raw materialsx1, x2 (amounts)

production functionx �
1 x �

2 , unit costsc1 and c2, price p
objective function (pro�t) px�

1 x �
2 � c1x1 � c2x2

Regulator sets a constraintx1 = x2

Assume that the �rm wants to add the usage of input1

this assumption imposes some restrictions on exogenous
variables (see below)
the �rm would rather face a constraintx1 = x2 + a, a > 0
than the original constraint

Example 2

We estimate how much the �rm should invest in lobbying (or
bribing) for the change of the constraint to the form
x1 = x2 + a

We solve the problem without making the tempting
eliminationx1 = x2

we do not eliminate variables at this stage because we want
the Lagrange multiplier of the constraint

FOCs:

� px� � 1
1 x �

2 � c1 � � = 0

� px�
1 x � � 1

2 � c2 + � = 0

x1 = x2

Example 2

Solving the FOCs by pluggingx2 = x1 into two other
conditions and eliminating�

we get� px� + � � 1
1 + � px� + � � 1

1 � c1 � c2 = 0
the solution isx1 = x2 = [( c1 + c2)=(p(� + � ))]1=( � + � � 1)

Lagrange multiplier is� = ( � c2 � � c1)=(� + � )

When exogenous variables satisfy� c2 > � c1, the �rm is
willing to add input1

for a smalla the �rm should invest at mosta� for lobbying,�
is the price of the constraint

Di�erentiability of solutions

When isx(a) di�erentiable? And what is its derivative?

Unconstrained problem

FOC: @f (x; a)=@xi = 0 , i = 1 ; : : : ; n, denote this set of
equations asF (x; a) = 0
by implicit function theorem, the solutionx(a) is di�erentiable
if the matrix Dx F = D 2

x f is non-singular
the assumptions of IFT are satis�ed whenf 2 C 2(N" (x(a)))
and D 2

x f (x; a) is non-singular onN" (x(a))

Di�erentiability of solutions

Equality constrained problem

FOCs are a system of equations that determinesx(a) and � (a)
FOCs can be written as

r x L(x; �; a) = 0

h(x; a) = 0

IFT requires that the Jacobian of this system w.r.t(x; � ) is
non-singular
note: non-singularity also guarantees NDCQ
denoteF (x; �; a) = 0, IFT:

D(x(a); � (a)) = � [D(x ;� ) F (x; �; a)] � 1Da F (x; �; a)

Example: consumer's problem

maxx u(x) s.t. p � x � I , x � 0, x; p 2 Rn , p � 0 and I are
exogenous

we assume that at optimum budget constraint is active and
x � 0

FOC:

r u(x) � � p = 0

I � p � x = 0

The solution (when unique) is Marshallian demand function
x(p; I )

Example: consumer's problem

Di�erentiability of the demand, the below matrix should be
non-singular

H (x; p) =
�

D 2u(x) � p
� pT 0

�

H is the Jacobian of FOCs w.r.t.(x; � )
H is non-singular whenD 2u(x) is neg. def. (and� > 0), in
that case alsoH is neg. def.

Exampleu(x1; x2) = ln x1 + ln x2, FOCs:

1=x1 � � p1 = 0

1=x2 � � p2 = 0

I � p1x1 � p2x2 = 0

and H (x; p) =

0

@
� 1=x2

1 0 � p1

0 � 1=x2
2 � p2

� p1 � p2 0

1

A

Example: consumer's problem

Using IFT we get the Jacobian

D(p;I ) (x(p; I ); � (p; I )) = � [H (x; p)]� 1D(p;I )F (x; �; p; I );

where

D( p; I ) F (x; �; p; I ) =

0

@
� � 0 0
0 � � 0

� x1 � x2 1

1

A

e.g., for p = (2 ; 2) and I = 1 , we getx1 = x2 = 1=4 and
� = 2 ,

D( p; I ) (x(p; I ); � (p; I )) = �

0

@
� 16 0 � 2

0 � 16 � 2
� 2 � 2 0

1

A

� 1 0

@
� 2 0 0
0 � 2 0

� 1=4 � 1=4 1

1

A

we getD( p; I ) (x(p; I ); � (p; I )) =

0

@
� 1=8 0 1=4

0 � 1=8 1=4
0 0 � 2

1

A



Su�cient optimality conditions

SB: 19.3, 21.5

Su�cient conditions for global optimum

NLP problemmax f (x) s.t. g(x) � 0 and h(x) = 0

Theorem
Solution of the FOCs is a global optimum iff is concave andgi ,
i = 1 ; : : : ; k (g : Rn 7! Rk ) are quasiconvex andh(x) = Ax + b

whenf is strictly concave the solution is unique
concavity off can be replaced by the assumption thatf is
quasiconcave andr f (x) 6= 0 for all feasiblex

Second order conditions

Theorem
Let f , g, h be twice continuously di�erentiable aroundx � which
satis�es the FOCs is a local maximum, ifD 2

x L(x � ; �; � ) is
negatively de�nite on the set

C = f v 6= 0 : r gi (x � ) � v = 0 ; i = 1 ; : : : k0;

r gi (x � ) � v � 0; i = k0 + 1 ; : : : ; k1;

Dh(x)v = 0g;

wherek1 �rst inequality constraints are active and �rstk0 of these
have strictly positive Lagrange multipliers

neg. def. mathematically:vT D 2
x L(x; �; � )v < 0 8v 2 C

note: Lagrange multiplier vectors� and � corresponding tox � , i.e., for
the variables FOCs hold
the neg.de�niteness requirement is known as the second order su�cient
condition

Second order conditions

Remarks

when all Lagrange multipliers corresponding to active inequality
constraints are positive, thenC is a tangent set de�ned by the
active inequality constraints and the equality constraints
the 2nd order condition is not satis�ed whenC = ;
a point can be a maximum even though neg. def. requirement
is not satis�ed, however we have: : :

Theorem

If x � is a local maximum, thenD 2
x L is neg.sem.def8v 2 C (when

C 6= ; )

negativesemide�niteness does not imply optimality

Second order conditions

Variations of second order conditions

if D 2
x L(x � ; �; � ) is neg. def. (for allv), then x � is a local

maximum
if � and � are Lagrange multipliers corresponding tox � in
FOCs andD 2

x L(x; �; � ) is neg. def. (for allv) and for all
feasiblex, then x � is a global maximum

Investigating de�niteness

Determining the de�niteness ofD 2
x L on linear constraints on

set C = f v 2 Rn : Dh(x � )v = 0g

determine the de�niteness of the bordered Hessian

H =
�

0 Dh(x)
Dh(x)T D 2

x L(x; � )

�

if h : Rn 7! Rm , then we need to check the last leading
(n � m) principal minors: if they alternate in sign and det(H )
has the same sign as(� 1)n , then D 2

x L(x � ; � )
example:n = 2 and m = 1 , it is enough to compute the
determinant ofH , if it positive, thenD 2

x L(x; � ) is neg. def.

Recipe for checking the su�cient conditions

Let us assume that we have a candidate for an optimum from
FOCs

1. Does the problem seem (quasi)concave?

if yes, show it, if no proceed to 2.

2. Does it seem possible thatD 2L is neg. def. for allv?

if yes, show it, otherwise proceed to step 3.
note: D 2f is part of D 2L, thus, it makes sense to begin by
checking whetherD 2f is neg. def.
if D 2f is not neg. def. then it is unlikely thatD 2L is neg. def.
for all v
if D 2f is neg. def. then check the Hessians of constraints
D 2gi , i = 1 ; : : : ; k (and equality constraints)
if all Hessians are pos. def. (neg. def.) for constraints with
positive (negative) Lagrange multiplier, then show thatD 2L is
neg. def. for allv.

Recipe for checking the su�cient conditions

3. Determine the de�niteness of the bordered Hessian

alternatively you may check the de�niteness ofD 2L on C
directly by using the de�nition; eliminate some of the variables
(components ofv) from the equation of the tangent set, plug
the variables in the expression ofD 2L and hope that you can
now say something on the de�niteness



Example

maxx2
1 x2 s.t. 2x2

1 + x2
2 = 3

From FOCs we get six candidates for an optimum

(x1; x2; � ) =

8
><

>:

(0; �
p

3; 0)

(� 1; 1; 1=2)

(� 1; � 1; � 1=2)

Hessian matrix of the objective function
�

2x2 2x1

2x1 0

�
the

determinant is� 4x2
1 � 0, i.e., the leading principal minors are

2x2 (1st lead. princ. minor) and� 4x2
1 (2nd lead. princ.

minor), it seems that the matrix inde�nite

Example

Hessian of the constraint
�

4 0
0 2

�
matrix is pos. def.

at points (x; � ) = ( � 1; 1; 1=2) we getD 2
x L =

�
0 � 2

� 2 � 1

�

which is inde�nite, however on
v 2 C = f v 6= 0 : (4 � (� 1); 2 � 1) � v = 0g the quadratic
form de�ned by the Hessian isv � D 2Lv = � 4v2

1 � v2
1 < 0, i.e.,

the points are local maxima

Example

What about the rest of the solution candidates?

x = (0 ; �
p

3): whenx2 � 0 (x2 � 0) the objective function is
at least (at most) zero. Hence,x = (0 ;

p
3) is local minimum

and x = (0 ; �
p

3) is local maximum

at x = ( � 1; � 1) we getD 2
x L =

�
0 � 2

� 2 1

�
, which is

inde�nite, the bordered Hessian is

0

@
0 � 4 � 2

� 4 0 � 2
� 2 � 2 1

1

A

in this casen = 2 and m = 1 , i.e., we need check the
determinant of the matrix which is� 48 implying that D 2

x L is
pos. def. onC which means that these points are local minima



Introduction to Programming and Matlab

Matlab tutorial

Introduction

Elements of programming
core: syntax (language) + logic + math
creativity + rigidity
learning by doing; work + making mistakes

Motivation for economists
most problems are too complicated to be solved with paper
and pencil
way to gain deeper understanding of economic models, e.g.
�nding "new phenomena"
trend: computers become more e�cient, computation costs
decrease

Programming as a part of academic work

1. Analyzing problem; creating a model

2. Designing an algorithmic solution

3. Programming the solution in a particular programming
language

4. Testing the correctness; going back to previous steps

5. Revising and extending the model and the software

Programming languages

Lay out an algorithm in a form that computer "understands" it
a programming language needs to be precise enough and close
to human languages

Elements of a programming language
commands ("vocabulary")
rules how to combine commands

Learning to program is comparable to learning a language
note: programming languages are not forgiving to mistakes

Overview on programming languages

High-level programming languages
languages close to English (note: high vs. low level is relative)
need to be translated (compiled) to instructions that the
computer hardware understands

Compiled languages
a separate compilation step is needed before program execution
examples: C, C++. Java, Fortran

Interpreted languages
program is compiled (translated) during the execution
examples: Matlab, Python, Lisp

Some examples and curiosities

R

GAUSS

Stata

GAMS

Mathematica

APL: a functional language

Octave: free alternative to Matlab

Matlab

Matlab is interactive system and programming language for
general scienti�c and technical computation and visualization
History

developed in 1079's by Cleve Moler
the purpose was to develop an interactive program to access
LINPACK and EISPACK (e�cient Fortran linear algebra
packages)
the name comes from "Matrix Laboratory"
rewritten in C in 1980's
Mathworks was founded in 1984

Features of Matlab

Designed for scienti�c computing

Relatively easy to learn

Quick when preforming Matrix operations

Can be used to build graphical user interfaces that function as
stand-alone programs

Has a huge number of Toolboxes

Has good built in graphics for plotting data and displaying
images
Matlab as a programming language

is an interpreted language; writing programs is easy, errors are
easy to �x, slower than compiled languages
has object-oriented elements
is NOT general purpose programming language



Basics of Using Matlab

variables and elementary operations

Basic principles

In Matlab all numeric data is stored in various size of arrays
the elementary (algebraic) operators apply to arrays (or
matrices = array with two dimensions)
state of mind: everything is arrays (crucial for writing e�cient
code and understanding Matlab programming)

Note: Matlab can be used as a calculator for scalars
the usual scalar operators:+ , � , � , =, ^, parentheses
relational operators:< , > , < = , > = , == , ~=
relational operators: & (and),j (or), ~(complement), xor
standard algebraic rules apply

Numerical variables

Entering a variable: =
name of variable is a sequence of letters and numbers (no
spaces, no numbers in the beginning), name cannot be a
reserved keyword

Entering scalars, matrices, and vectors
examples 1, entering a scalar:
a=1

example 2, entering a2 � 2 matrix:
A= [1 0; 2 3];

note: the role of semicolon
example 3, entering a row vector:
A= [1 0 2 3];

example 4, entering a column vector:
A= [1; 0; 2; 3];

Accessing thei ; j element of an array:

A(i,j)

Other data types

Character arrays
A = 'string'

Structures
used for grouping data, example:
persons(1).name='John';
persons(1).age=35;
persons(2).name='Diana';
persons(2).age=60

Cell arrays
elements can contain any data, example:
A{1}=ones(3);
A{2}='John';
A{3}=persons

Generating arrays

Colon operator
syntax: variable=startvalue:stepsize:endvalue
example:
a=0:2:6;

Commands for creating arrays
arrays of zeros; zeros, array of ones; ones
diagonal matrices; diag, identity matrix; eye
random arrays: rand, randn, randi

Initializing variables
Matlab may execute faster if the zeros (or ones) function is
used to set aside storage for an array before its elements are
generated

Handling arrays

Arrays can be concatenated
example: A=[B C];

A(r1:r2,k1:k2) returns the block consisting of the elementsk1
up to and includingk2 from rowsr1 up to and includingr2
from A

respectively if there are more dimensions
note: A(r1:r2,:) picks the matrix consisting of rows fromr1 to
r2

A(v1,v2) returns the elements in the rows speci�ed in vector
v1 and the columns speci�ed in vectorv2

\end" refers to the size of the relevant dimension
Examples:
A=[magic(6) ones(6,1)];
B=A([1,3], [2,4])
a=A(2,:)
B=A(2:4,3:end)

Information about variables

To show a list of variables stored in memory use who and whos
To clear variables use clear

during programming, when testing your scripts, it may be
worth clearing the variables every now and then
other clear commands: clf and clc

Array functions
information on arrays: size and length (for vectors)
reshape, repmat, squeeze

Saving data
save command (and load) and diary

Importing data
loading .txt �les: importdata, dlmread, csvread, fopen, ...
reading .xls �les: xlsread

Basic maths

+ and - work for arrays of the same size
* is matrix product

example:
a=[1 2; 3 4]*[3;6]

A^n is used to raise matrixA to a powern

' is transpose
To make an operation (+,-,*,/,^) element-wise use . before
the operator

example:
a=[1 2; 3 4].*[5 6; 7 8];
b=[1 2; 3 4]*[5 6; 7 8];

note: many built-in functions operate element-wise



Logical expressions

Relational operators
smaller than (< ), smaller or equal than (< =) respectively,
larger than, equal ==, not equal ~=
outcome of logical expression is either true (1) or false (0)
other commands: any, all

Logical conditions can be combined into logical expressions
using logical operators

and (&), or (j), not ~

Relational and logical operators can be used over arrays
for scalars it is recommended to use && (short-circuit and)
instead of & andjj instead ofj
the outcome of logical condition is a logical array

Example:
x=rand(10,1);
a= (x>.4 & x<.6)



Graphs and Plots in Matlab

2d and 3d graphics and image manipulation

Basic 2D plotting

plot command
plot(y) plots vector y against its indices
plot(x,y) plots vector y against x
fplot can be used for function plots (no need for arrays)
example:
x=1:100; y=x.^2-5; plot(x,y)

Style commands, see help plot
line styles: dashed, dotted, dash dotted
plot markers: +, � , o, x
line colors, line width etc

New �gure window: �gure

Plot commands

Labels, title and legends
xlabel, ylabel, title, legend, text
note: Matlab understands some latex

Multiple plots in same �gure
hold on (and hold o�)
use plot(x1,y1,x2,y2)
combine multiple y values in a matrix: plot(x,[y1 y2])

Miscellaneous
grid on (or o�), axis box, axis square, box on (o�)
axis range: axis([xmin xmax ymin ymax])

Example:

figure(2); x=1:100; y=x.^2-5; plot(x,y,'k-.');
grid on; axis([10 50 0 10000]), axis square,
y2=x.^(1.5)-10; hold on; plot(x,y2,'b--');
xlabel('x'); title('example')

3D plots

Use plot3 to draw 3d lines
example:
z=[0:pi/50:10*pi];x=exp(-.2.*z).*cos(z);
y=exp(-.2.*z).*sin(z); plot3(x,y,z);

Surfaces and contours
to evaluate a function at givenx; y-grid-points use meshgrid to
create the grid
use surf to plot the surface
use contour to plot contours
example:
[x,y]=meshgrid(-5:.5:5,-10:.5:10); z=x.^2+2*sin(y);
figure(1); surf(x,y,z);
figure(2); contour(x,y,z)

Useful graphics commands

Several plots in the same �gure: subplot(m,n,p)
splits the �gure into m � n matrix, p identi�es the part where
the next plot will be drawn

Bars, pies, histograms
example:
subplot(2, 2, 1); bar([2 3 1 4; 1:4]), title('Bar graph { mult iple series')
subplot(2, 2, 2); bar3([2 3 1 4; 1:4]),
title('3D bar graph')
subplot(2, 2, 3); pie([1 2 3 4]), title('Pie chart')
subplot(2, 2, 4); hist(randn(1000,1))

Exporting �gures
use print command, example:
print -deps test.eps



Programming with Matlab

scripts, loops and conditional expressions, functions

Introduction

It is possible to write Matlab commands (or scripts) in m-�les
and execute these �les

m-�les can be called/run in Matlab by their name
anything in the Matlab workspace can be called from a script
note: m-�les are text

Functionsare computer codes that accept inputs from the
user, carry out computations, and produce outputs

functions are created in m-�les
functions di�er from scripts in having a function declaration
(more later) and you cannot (unless you necessarily want) call
variables in Matlab workspace inside a function
note: many Matlab functions are implemented as m-�les, to
view the code use edit command

Note: comments are added in m-�les by starting the comment
with %

in general you cannot comment your codes too much

For loops

Syntax to repeat execution of a block of code
basic syntax:
for counter=startvalue:stepsize:endvalue
% some commands

end
the following syntax is also possible
for counter=[vector]
% some commands

end
example:
n=100; x=1:n;
for i=2:5:n
x(i)=x(i-1)+i;

end
plot(x)

Conditional execution with if/else structure

Syntax
if logical_expression1
% commands executed if expression1 is true

elseif logical_expression2
% commands executed if logical_expression1 is false
% but logical_expression_2 is true

else
% executed in all other cases

end

note: else and elseif are not necessary
logical expression is composed of relational and logical
operators
example:
if x >= 0
y = sqrt(x);
else
disp('Number cannot be negative');
end

Conditional execution with Switch structure

Alternative for if structure
Syntax:
switch variable
case option1
statements ...

case option n
statements

otherwise
statements

end
Example:
state = input('Enter state: ')
switch state
case {'TX', 'FL', 'AR'}
disp('State taxes: NO');

otherwise
disp('State taxes: YES')

end

While loop

Syntax:
while logical_expression
commands

end

the loop executes the commands as long as logical expression
is true
example:
n = input('Enter nr > 0: '); f = 1;
while n > 0
f = f .* n
n = n - 1

end

Breaking loops
break command inside loop (for or while) terminates the loop
note: any Matlab script can be stopped from running by
pressing control + c

Interaction with the user

Receiving input from the user
as function arguments (to come)
input command, e.g., before "input('Enter state: ')"

Displaying output
disp command, example:
A = [1 4];disp('The entries in A are'); disp(A);
printf (allows specifying the output type), example:
x = 2;
printf('The value of x as integer is %d \n
and as real is %f', x, x);

Number display can be controlled by format command

Writing a function

Each function starts with a function-de�nition line that
contains

the word function
a variable that de�nes the function output
a function name
input argument(s)
example:
function avg = Average3(x, y, z)
avg = (x + y + z) / 3;

Function name and name of M-�le should be the same
function name has to be a valid Matlab variable name
recall that Matlab is case sensitive
m-�le without function declaration is a "script" �le

Using help
comment lines immediately following the �rst function line are
returned when help is queried



More advanced function programming

Inputs and outputs
nargin and nargout, varargin
note: it is not necessary to give all arguments (unless needed)
or to take all outputs
note: it is possible to write a function without arguments

Subfunctions
complex functions can be implemented by grouping smaller
functions (called subfunctions) together in a single �le
any function declaration after the initial one is a subfunction to
the main function, a subfunction is visible to all functions
declared before it
example:
function [output1,output2]=myfunction(input1)
% some commands

c=sub_myfunction(a,b);
% some commands

function output1=sub_myfunction(input1,input2)

Local and global variables

Variables inside a function in an M-�le are local variables
local variables are not de�ned outside the function
subfunctions have their own part of memory and cannot access
variables of the main function (unless they are shared via
global)

Global variables are available to all functions in a program
warning: it might become unclear what a global variable
contains at a certain point as any intermediate function could
have accessed it and could have changed it (hence avoid them)
global variables are typically reserved for constants
global variables are declared in the workspace using the
keyword global
when used inside a function, the function must explicitly
request the global variable by name

Miscellaneous: directories, diagnostics

How does Matlab search for function �les?
�rst from the current working directory, then from other
directories speci�ed in the path
useful path command: path, pathtool

Debugging and enhancing your code
Matlab editor has a debugger tool
pro�le and tic (toc) commands can be used to analyze
computation times

Function Handles
useful for functions of functions, example: f = @fun creates a
function handle "f" that references function "fun"

Tips for e�ciency

Avoid loops and vectorize instead

Use functions instead of scripts

Avoid overwriting variables

Do not output too much information to the screen

Use short circuit && andjj instead of & andj

Use the sparse format if your matrices are very big but contain
many zeros
Finally: there is a trade-o� between speed, precision, and
programming time

don't spend an hour �guring out how to save yourself micro
seconds of computing time



Dynare

basics on writing a Dynare model,
material: Dynare user guide at www.dynare.org

Introduction

"DYNARE is a pre-processor and a collection of MATLAB routines
that has the great advantages of reading DSGE model equations
written almost as in an academic paper." (DYNARE User Guide)
DYNARE can be used to:

compute the steady states of DSGE models

compute the solutions of deterministic models

compute �rst and second order approximations to solutions of
stochastic models

estimate parameters of DSGE models

compute optimal policies in linear-quadratic models

See www.dynare.org

The purpose

Finding a solution to a dynamic system of the form
E" [f (yt +1 ; yt ; yt � 1; " t ; � )] = 0

such systems arise from stochastic macro models
yt are endogenous variables," t are exogenous shocks
(expected value zero),� are exogenous parameters
a solution is a function (e.g., policy)yt = g(yt � 1; " t ), note
that f is known
in the deterministic case" t are known (no expectation) and
solution is simply a path ofy's

Dynare gives linearization ofg around the steady state
at the steady state�y it holds that E" [f (�y; �y; �y; " ; � )] = 0
the �rst order Dynare solution is of the form
yt = �y + A(yt � 1 � �y) + B" t , second order approximation
respectively

Example

Optimal growth model

max
kt ;ct

E

"
1X

t =0

� t (c1� �
t � 1)=(1 � � )

#

(1)

ct + kt = zt k �
t � 1 + (1 � � )kt � 1 (2)

zt = (1 � � ) + � zt � 1 + " t (3)

The FOC's lead to a system to be solved: equations (2), (3),
and c� �

t = E
�
� c� �

t +1 (� zt +1 k � � 1
t + 1 � � )

�

herey = [ c; k; z]

Dynare �les

Dynare models are written in .mod �les
use the Matlab editor as if writing an m-�le
when saving, it is important to append the extension '.mod'
instead of '.m'.

There are four major blocks in a mod-�le
The preamble, listing the variables and the parameters
The model, containing the equations
Initial values for linearization around the steady state
The variance-covariance matrix for the shocks

Dynare �le blocks

The preamble
variables, example:
var c, k, z;
exogenous variables, e.g., shocks:
varexo e;
parameters and their values:
parameters alpha, beta, delta, nu, rho;
alpha=.36; beta=.99; delta=.025; nu=2; rho=.95;

The model (x(� n) denotesxt � n )
model;
c^(-nu)=beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1)+1 -delta);
c+k=z*k(-1)^alpha+(1-delta)*k(-1);
z=(1-rho)+rho*z(-1)+e;
end;

Dynare �le blocks

The model block (cont'd)
all the relevant equations need to be listed, also those for the
shock process
there should be as many equations as there are endogenous
variables
the timing re
ects when a variable is decided, note
contemporaneous are without parenthesis

Initialization block
initial values for �nding the steady state
it can be tricky to �gure out a good initial guess!
initval;
c = 1; k = .8; z = 11;
end;

Dynare �le blocks

Random shock block
indicate the standard deviation for the exogenous innovation
shocks;
var e; stderr 0.007;
end;
covariances are given as var e, u = ...; (cov. of e and u)

Solution and properties block
the solution is found by command stochsimul; which (1)
computes a Taylor approximation around the steady state of
order one or two (2) simulates data from the model (3)
computes moments, autocorrelations and impulse responses
inputs of stochsimul: periodsis the number of periods to use
in simulations (default=0),irf is the number of periods on
which to compute the impulse response functions (default=0),
nofunctionssuppresses the printing of the approximated
solution. order is the order of the Taylor approximation (1 or 2)



Dynare outputs

Dynare is run in Matlab by "dynare modelname"
Outputs are saved in a global variable oowhich contains the
following �elds

steadystate contains the steady states of the variables (in the
order used in the preamble)
mean, var (variances), autocorr (autocorrelations) etc

Saving variables
use "dynasave(FILENAME) [variable names separated by
commas]"at the end of .mod �le to save variables
variables can be retrieved by load -mat FILENAME
note: Dynare clears all variables in the memory unless calledby
"dynare program.mod noclearall"

Dynare outputs

The main output is the linearized (or second order approx)
policy function "g"around the steady state
Example:
POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

interpretation, e.g.,
kt = �k + 0 :97(kt � 1 � �k) + 2 :59(zt � 1 � �z) + 2 :73" t , where�k
and �z are steady-state values (the constants on the �rst line)

Loops

Running the same Dynare program for several parameter
values
Write a Matlab script (or function) in which you loop over the
relevant parameter values

for each value ofparameteruse "save parameter�le parameter"
in the Dynare �le call "load parameter�le"and replace the part
in which the parameter value is set with
"set param value('�', �)"; the �rst argument is the name in the
.mod �le and the second is the numerical value

Scope and limitations

Dynare has tools for LQ models, estimation, and regression
Finding steady-states

use other Matlab routines

Limitations
di�cult to modify the Dynare code for "non-standard"
calculations
di�cult to detect errors
documentation?
limited to approximations, e.g., in dynamic programming the
are other methods (implemented e.g., in CompEcon toolbox)


