
1 Optimization

Mathematical programming refers to the basic mathematical problem of

finding a maximum to a function, f, subject to some constraints.1 In other

words, the objective is to find a point, x∗, in the domain of the function such

that two conditions are met:

i) x∗ satisfies the constraint (i.e. it is feasible).

ii) There is no other feasible x with f(x) > f(x∗).

Whenever all points in the domain of f are feasible, the problem is called

unconstrained. A more general type of mathematical programming which

will be referred to as classical (or Lagrangian) programming problem

is to maximize a given function subject to a set of equality constraints.

The general programming problem is the nonlinear programming problem

where a given function is maximized subject to a set of inequality constraints.

A special case, important in itself, is the linear programming problem

which seeks to maximize a function of a given linear form subject to a set of

linear inequality constraints.

We restrict our attention to optimization problems in which the feasible set is

a given subset of Rn, and we refer to these problems as static optimization

problems. In dynamic optimization problems, the feasible set of future

periods is affected by the choices today.

1All problems will be stated subsequently as one of maximization. A problem of mini-

mization can be treated as one of maximization simply by changing the sign of the function

to be minimized.

1



The general form of the mathematical programming problem can be stated

max f(x) subject to x ∈ X

where x ∈ Rn, X ⊂ Rn and f : X → R

It will generally be assumed that X is not empty, that is, that there exists

a feasible vector x ∈ X. In economics, the vector x is frequently called the

vector of instruments, the function f(x) is frequently called the objec-

tive function, and the set X of feasible instruments is frequently called the

constraint set or the opportunity set or the feasible set.

The basic economic problem of allocating scarce resources among competing

ends can then be represented as one of mathematical programming, where

a particular resource allocation is represented by the choice of a particular

vector of instruments; the scarcity of resources is represented by the opportu-

nity sets, reflecting constraints on the instruments; and the competing ends

are represented by the objective function, which gives the values attached to

each of the alternative allocations.

2 Unconstrained Optimization

2.1 Quadratic forms and Taylor’s theorem

For convenience and later reference, we represent here the matrix notation

used further on as well as several characterizations of quadratic forms.

Suppose A is an n× n symmetric matrix of the following form
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A =



a11 a12 a13 ... a1n

a12 a22 a23 ... a2n

a13 a23 a33 ... a3n

... ...

a1n a2n a3n ... ann


Definition 1 A quadratic form is a function Q : Rn × Rn → R defined

by

QA(y) = y · Ay =
n∑

i=1

n∑
j=1

aijyiyj

where A is an n× n symmetric matrix and y ∈ Rn.

Definition 2 Suppose that A is an n×n symmetric matrix and that QA(y) =

y · Ay is the quadratic form associated with A. Then A and QA are called:

1. positive semidefinite if QA(y) = y · Ay ≥ 0 for all y ∈ Rn;

2. positive definite if QA(y) = y · Ay > 0 for all y ∈ Rn, y 6= 0;

3. negative semidefinite if QA(y) = y · Ay ≤ 0 for all y ∈ Rn;

4. negative definite if QA(y) = y · Ay < 0 for all y ∈ Rn, y 6= 0;

5. indefinite if QA(y) = y · Ay < 0 for some y ∈ Rn and QA(y) > 0 for

other y ∈ Rn.

Suppose A is a n×n symmetric matrix. Define ∆k to be the determinant

of the upper left-hand corner k × k submatrix of A for 1 ≤ k ≤ n. The

determinant ∆k is called the k-th leading principal minor of A with ∆1 =

a11

∆2 = det

(
a11 a12

a12 a22

)
and finally ∆n = det A.

3



Theorem 3 If A is an n×n symmetric matrix and if ∆k is the k-th leading

principal minor of A for 1 ≤ k ≤ n, then

1. A is positive definite if and only if ∆k > 0 for k = 1, 2, ..., n;

2. A is negative definite if and only if (−1)k∆k > 0 for k = 1, 2, ..., n

(that is, the leading principal minors alternate in sign with ∆1 <

0, ∆2 > 0, ∆3 < 0,etc.).

To test semidefiniteness we have to evaluate all principal minors, and there-

fore we have to examine a greater number of determinants. If A is a quadratic

matrix of order n and we wipe out (arbitrary) r of the rows and the cor-

responding r columns as well, the resulting (n− r)× (n− r) submatrix is

called a principal minor
˜

∆k is the k-th principal minor of A with k = n−r.

We have the following theorem:

Theorem 4 If A is an n×n symmetric matrix and if ∆̃k is the k-th principal

minor of A for 1 ≤ k ≤ n, then

1. A is positive semidefinite if and only if ∆̃k ≥ 0 for all principal

minors of dimension k and k = 1, 2, ..., n;

2. A is negative semidefinite if and only if (−1)k∆̃k ≥ 0 for all princi-

pal minors of dimension k and for k = 1, 2, ..., n (that is, the principal

minors alternate in sign with ∆̃1 ≤ 0, ∆̃2 ≥ 0, ∆̃3 ≤ 0, etc.).

3. A positive (negative) semidefinite matrix A is positive (negative) defnite

if and only if A is a nonsingular matrix.

Let f be a function defined on an open set B ⊂ Rn, whose first and second

partial derivatives exist at x. The vector of the first partial derivatives is

called the gradient, and it’s denoted by gradf(x) or ∇f(x). Formally
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∇f(x∗) =

(
∂(f(x∗)

∂x1

,
∂f(x∗)

∂x2

, ...,
∂f(x∗)

∂xn

)
The symmetric n×n matrix of second partial derivatives∇2f(x) ≡ H(x),evaluated

at point x ∈ B is called the Hessian matrix of f , that is

∇2f(x) ≡ H(x) =


∂2f(x)/∂x1∂x1 ... ∂2f(x)/∂x1∂xn

... ...

... ...

∂2f(x)/∂xn∂x1 ... ∂2f(x)/∂xn∂xn


Recall that Taylor’s formula can be extended to real-valued functions f de-

fined on an open subset B of Rn. In order to state the general theorem in a

form which resembles the one-dimensional case, recall the special symbols

f ′(x; t), f ′(x; t) , ..., f (m)(x; t),

that we introduced for Taylor’s formula. These play the role of higher-order

directional derivatives, and they are defined as follows:

If x is a point in Rn where all second-order partial derivatives of f exist, and

if t = (t1, ..., tn) is an arbitrary point in Rn, we write

f ′′(x; t) =
n∑

i=1

n∑
j=1

Dijf(x)tjti

We also define

f ′′′(x; t) =
n∑

i=1

n∑
j=1

n∑
k=1

Dij,k f(x)tktjti

if all the third order partial derivatives exist at x. The symbol f (m)(x; t) is

similarly defined if all m-th order partials exists.
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Note that these sums are analogous to the formula

f ′(x; t) =
n∑

i−1

D1f(x)ti

for the directional derivative of a function which is differentiable at x.

Theorem 5 (Taylor’s formula): Assume that f and all its partial deriva-

tives of order < m are differentiable at each point of an open set B in Rn. If

a and b are two points in S such that L(a, b) ⊆ B, then there is a point z on

the line segment L(a, b) such that

f(b)− f(a) =
m−1∑
k=1

1

k!
f (k)(a; b− a) +

1

m!
f (m)(z; b− a).

Now that we are armed with Taylor’s formula for functions of several vari-

ables, we can return to our primary objective-to develop tests for maximizers

(and minimizers) among the critical points of a function.

2.2 Basic definitions and existence

Definition 6 The r-neighborhood of x, Br(x) is the set of all vectors y

in Rn whose distance from x is less than r, that is

Br(x) = {y ∈ Rn : d(x, y) < r} ,

where d(·, ·) is the Euclidean distance.

Definition 7 Suppose that f(x) is a real-valued function defined on a subset

C ⊂ Rn. A point x∗ in C is

1. a global maximizer for f(x) if f(x∗) ≥ f(x) for all x ∈ C;
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2. a strict global maximizer for f(x) on C if f(x∗) > f(x) for all

x ∈ C such that x 6= x∗;

3. a local maximizer for f(x) if there is a positive number δ such that

f(x∗) > f(x) for all x ∈ C for which x ∈ Bδ(x
∗) ;

4. a strict local maximizer for f(x) if there is a positive number δ

such that f(x∗) > f(x) for all x ∈ C for which x ∈ Bδ(x
∗) and x 6= x∗;

5. a critical point for f(x) if the first partial derivatives of f(x) exists

at x∗ and

(∂f/∂xi)(x
∗) = 0, i = 1, 2..., n.

Before we assert how to characterize and identify extrema, we have to be

concerned with the existence of extrema per se.

Theorem 8 (Weierstrass or extreme value theorem)

Suppose that f(x) is a continuous function defined on C, which is compact

(i.e. closed and bounded) in Rn.Then there exists a point x∗ ∈ C at which f

has a maximum, and there exists a point x∗ ∈ C at which f has a minimum.

Thus

f(x∗) ≤ f(x) ≤ f(x∗)

for all x ∈ C.

2.3 Local and global extrema. Saddlepoints

2.3.1 Functions of one variable

Theorem 9 (Necessary condition for maximum in R)

Suppose that f(x) is a differentiable function on an interval I. If x∗ is a local

maximizer of f(x), then either x∗ is an endpoint of I or f ′(x∗) = 0.
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Theorem 10 (Second order sufficient conditions for a maximum

in R)

Suppose that f(x), f ′(x), f ”(x) are all continuous on an interval in I and

that x∗ ∈ I is a critical point of f(x).

1. If f ′′(x) ≤ 0 for all x ∈ I, then x∗ is a global maximizer of f(x) on I.

2. If f ′′(x)̇ < 0 for all x ∈ I, such that x 6= x∗, then x∗is a strict global

maximizer of f(x) on I.

3. If f ′′(x∗) < 0 then x∗ is a strict local maximizer of f(x).

2.3.2 Functions of several variables

Theorem 11 (First order necessary conditions for a maximum in

Rn)

Suppose that f(x) is a real-valued function for which all first partial deriva-

tives of f(x) exists on an open subset B ⊂ Rn. If x∗ is a local maximizer of

f(x), then x is a critical point of f(x), that is

(∂f/∂xi)(x
∗) = 0, i = 1, 2, ..., n.

Theorem 12 (Second order necessary conditions for a local max-

imum in Rn)

Suppose, that f(x) is a real-valued function for which all first and second

partial derivatives of f(x) exists on an open subset B ⊂ Rn. If x∗ is a local

maximizer of f(x), then at x∗, H(f(x∗)) is negative semidefinite.

Theorem 13 (Second order sufficient conditions for a strict local

maximum in Rn)

Suppose that f(x) is a real-valued function for which all first and second

partial derivatives of f(x) exists on an open subset B ⊂ Rnand x∗is a critical
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point of f . If Hf(x∗) is negative definite, then f achieves a strict local

maximum at x∗.

So far we have described sufficient conditions for local extrema. We pursue

the analysis now one step further and consider sufficient conditions for global

extrema.

Theorem 14 (Second order sufficient conditions for a (strict global maxi-

mum in Rn)

Suppose that x∗ is a critical point of a function f(x) with continuous first

and second order partial derivatives on Rn. Then:

1. x∗ is a global maximizer for f(x) if (x− x∗) ·Hf(z) · (x− x)∗ ≤ 0 for

all x ∈ Rn and all z ∈ [x∗, x];

2. x∗ is a strict global maximizer for f(x)if (x − x) ·Hf(z) · (x − x) < 0

for all x ∈ Rn such that x 6= x∗and for all z ∈ [x∗, x].

In the terminology quadratic forms, we hence have

Theorem 15 Suppose that x∗ is a critical point of a function f(x) with

continuous first and second order partial derivatives on Rn and that Hf(x)

is the Hessian of f(x). Then x∗ is :

1. A global maximizer for f(x) if Hf(x) is negative semidefinite on Rn;

2. A strict global maximizer for f(x) if Hf(x) is negative definite on Rn.

3 Concave and convex functions

Definition 16 A function f defined on the convex set C ⊂ Rn is called

concave if for every x1, x2 ∈ C and 0 ≤ λ ≤ 1, we have

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2).
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Definition 17 A function f defined on the convex set C ⊂ Rn is called

strictly concave if for every x1 6= x2,and 0 < λ1, we have

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2).

Remark 18 If f is (strictly) concave then g ≡ −f is a (strictly) convex

function. We will henceforth concentrate on concave functions. All the results

will also obtain with the obvious modifications for convex functions.

4 Concave functions of one variable

Theorem 19 (Continuity of concave functions)

Let f be concave function on the convex set C ⊂ R. Then f is continuous

on the interior of C.

Theorem 20 Let f be a differentiable function on the open convex set C ⊂
R. It is concave if and only if for every x0, x ∈ C, we have

f(x) ≤ f(x0) + f ′(x0)(x− x0).

It is strictly concave if and only if the inequality is strict for x 6= x0.

Theorem 21 Let f be a differentiable function on the open convex set C ⊂
R. It is concave (strictly concave) if and only if f ′ is a nonincreasing (de-

creasing) function.

Theorem 22 (Concavity for C2 functions)

Let f be a function on the open convex set C ⊂ R. Suppose that f ” exists on

C. Then f is a concave function if and only if f ”(x) ≤ 0 for every x ∈ C.

If f ”(x) < 0 for every x ∈ C, then f is strictly concave.
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5 Concave function of several variables

Definition 23 Let f be a function defined on a convex set C ⊂ Rn. The set

H(f) = {(x, α) : x ∈ C, α ∈ R , f(x) ≤ α}

in Rn+1 is called the hypograph of f . Similarly, the epigraph of f is

the set

E(f) = {(x, α) : x ∈ C, α ∈ R, f(x) ≥ α}.

Theorem 24 Let f be a function defined on a convex set C ⊂ Rn. Then f

is concave if and only if its hypograph H (f) is a convex set. Similarly, f is

convex if and only if its epigraph E(f) is a convex set.

The initial definition and the equivalent characterization in terms of its hy-

pograph are communicating the same geometric concept, that, for any two

points above the curve (surface) the line segment joining the two points lies

entirely below the curve (surface) between the two points.

Definition 25 For any function f on C and any α ∈ R the set U(f, α)

defined by

U(f, α) = {x : x ∈ C, f(x) ≥ α}

is called the upper level (or contour set of. The set

L(f, α) = {x : x ∈ C, f(x) ≤ α}

is called the lower level (or contour) set of f . The set

Y (f, α) = {x : x ∈ C, f(x) = α}

is called the level surface of f at α.

Corollary 26 Let f be a concave (convex) function on C ⊂ Rn. Then its

upper (lower) level sets are convex sets for every real number α.
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Theorem 27 (Concavity for C1functions)

Let f be a differentiable function on the open convex set C ⊂ Rn. It is

concave if and only if for every x0, x ∈ C we have

f(x) ≤ f(x0) + (x− x0)
T∇f(x0).

It is strictly concave if and only if the inequality is strict for x 6= x0.

Theorem 28 (Concavity for C2 functions)

Let f be a twice differentiable function on an open convex set C ⊂ Rn.Then f

is concave if and only if its Hessian matrix is negative semidefinite for every

x ∈ C. That is, for every x ∈ C and y ∈ Rn, we have

yT H(x)y ≤ 0

If H(x) is negative definite for every x ∈ C, then f is strictly concave.

Now we state a few results on the closedness of concave functions under

functional operations.

Theorem 29 Let f be concave function and let λ be a nonnegative number.

Then F (x) = λf(x) is also a concave function. Let f1and f2 be concave

functions. Then F (x) = f1(x) + f2(x) is also concave.

6 Extrema of concave functions

The importance of concave (and convex) functions from the optimization

point of view lies in some properties of concave functions with regard to

their extrema.

Theorem 30 Local-global property of the maximum

Let f be a concave function defined on a convex set C ⊂ Rn. Then every local

maximum of f at x∗ ∈ C is a global maximum of f over all C.
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Theorem 31 The set of points at which a concave function f attains its

maximum over C is a convex set.

Corollary 32 Let f be a strictly concave function, defined on the convex

set C ⊂ Rn. If f attains its maximum at x∗ ∈ C, this maximizing point is

unique.

Theorem 33 Sufficiency condition for global extrema

Let f be a differentiable concave (strictly concave) function on the convex set

C. If

∇f(x∗) = 0

at a point x∗ ∈ C, then f attains its maximum (unique maximum at x∗).

7 Quasi-concave and quasi-convex functions

We begin generalizing concave functions by recalling from the preceding chap-

ter that the upper-level sets of concave functions are convex sets. Concavity

of a function is a sufficient condition for this property, but not a necessary

one. We define a family of functions by the convexity of their upper-level

sets. Such functions are called quasi-concave functions. They are general-

ized concave functions, since it is easy to show that every concave function

is quasiconcave, but not conversely.

7.1 Quasi-concave functions

Definition 34 Let f be defined on the convex set C ⊂ Rn. It is said to be

quasiconcave if its upper-level sets

U(f, α) = {x : x ∈ C, f(x) ≥ α}

13



are convex sets for every real α. Similarly, f is said to be quasiconvex if

its lower-level set

L(f, α) = {x : x ∈ C, f(x) ≤ α}

are convex sets for every real α.

Let us mention here a family of functions that can be viewed as a general-

ization of single variable monotonic functions on the one hand, and of affine

functions, on the other hand.

Definition 35 A function is said to be quasimonotonic if it is both qua-

siconcave and quasiconvex.

For such a function, clearly, both its upper- and lower-level sets are convex,

and for every x1, x2 in the convex domain of f and for every 0 ≤ λ ≤ 1

max[f(x1), f(x2)] ≥ f(λx1 + (1− λ)x2) ≥ min[f(x1), f(x2)].

Theorem 36 Let f be defined on the convex set C ⊂ IRn. It is a quasicon-

cave function if and only if

f(λx1 + (1− λ)x2) ≥ min[f(x1), f(x2)]

for every x1, x2 ∈ C,and 0 ≤ λ ≤ 1.

Note that the preceding characterization of quasiconcavity is identical to the

following one

f(x1) ≥ f(x2) ⇒ f(λx1 + (1− λ)x2) ≥ f(x2)

It is also clear that a concave function is also quasiconcave, since

f(λx1 + (1− λ)x2) ≥ f(x1) + (1− λ)f(x2) ≥ min [f(x1), f(x2)] .

The most important property of quasiconcave functions for microeco-

nomic theory is, however, the following:
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Theorem 37 If f : Rn → R is quasiconcave and if g : R → R is strictly

increasing, then g (f (x)) is also quasiconcave.

The theorem above is in contrast to the behavior of concave functions. Its

importance for microeconomics stems from the fact that in consumer theory,

preferences of a consumer identify the level sets of any utility function rep-

resenting the preferences, but not the numerical values of the utility levels.

Convexity of preference is equivalent to quasiconcavity of the utility repre-

sentation and hence the theorem above states that any increasing function

of a given utility function is a representation of the same preferences.

Theorem 38 (Local-global property of the maximum)

Let f be a strictly quasiconcave function defined on the convex set C ⊂ Rn.

If x∗ ∈ C is a local maximum of f , then x∗ is also a strict global maximum

of f on C. The set of points at which f attains its global maximum over C

is a convex set.

7.2 Differentiable quasi-concave functions

Theorem 39 (Quasiconcavity for C1 functions)

Let f be differentiable on the open convex set C ⊂ Rn. Then f is quasiconcave

if and only if for every x1, x2 ∈ C

f(x1) ≥ f(x2) ⇒ (x1 − x2)
T∇f(x2) ≥ 0.

Theorem 40 Let f be a twice differentiable quasiconcave function on the

open convex set C ⊂ Rn. If x0 ∈ C, v ∈ Rn,

vT∇f(x0) = 0 ⇒ vT∇2f(x0)v ≤ 0.

The following strengthening of the theorem allows a complete character-

ization of quasiconcave function for case that ∇f(x) 6= 0 for every x ∈ C.
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Theorem 41 Let f be a twice differentiable quasiconcave function on the

open convex set c ⊂ Rn and suppose that ∇f(x) 6= 0 for every x ∈ C. Then

f is quasiconcave if and only if x ∈ C, v ∈ Rn,

vT∇f(x0) = 0 ⇒ vT∇2f(x0)v ≤ 0.

We conclude by mentioning some more necessary and sufficient conditions

for quasiconcavity of twice differentiable functions - this time in terms of

”bordered determinants” or ”bordered Hessians.”

Theorem 42 (Quasiconcavity for C2 functions)

1. Let f be a twice differentiable function on the open convex set C ⊂ Rn
+

(the non-negative orthant). Define the determinants Dk(x), k + 1, ..., n

by

Dk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
∂f

∂xi

...
∂f

∂xk

∂f

xI

∂2f

∂s1∂x1

...
∂2f

∂x1∂xk

... ...

∂f

∂xk

∂2f

∂xk∂x1

...
∂2f

∂xk∂xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

A necessary condition for f to be quasi-concave is that (−1)kDk(x) ≥ 0

for all k = 1, ..., n and all x ∈ C.

2. A sufficient condition for f to be quasi-concave is that (−1)kDk(x)̇ > 0

for all k = 1, ..., n and all x ∈ C.

7.3 Strict Quasiconcavity

Definition 43 Let f be defined on the convex set C ⊂ Rn. It is said to be

strictly quasiconcave if

f(λx1 + (1− λ)x2)̇ > min[f(x1), f(x2)]
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for every x1, x2 ∈ C, x1 6= x2, and 0 < λ < 1. If f is strictly quasiconcave,

then g ≡ −f is a strictly quasiconvex function.2

What is the difference between quasiconcave and strictly quasiconcave func-

tions. A function that is quasiconcave, but not strictly quasiconcave is con-

stant on some interval of its domain of definition. Note also that strict

quasiconcavity is not a proper generalization of concavity, but only of strict

concavity.

Theorem 44 Let f be a continuous function, defined on Rn. If f is strictly

quasiconcave, then its upper level sets are strictly convex.

An important property shared by concave and strictly quasiconcave functions

is that every local maximum is a global one. This property however holds for

more general families of functions as well. The family of functions we will be

concerned with now lies, subject to some continuity requirements, between

the families of quasiconcave and strictly quasiconcave functions.

Let us recall that we can define quasiconcave functions by the condition

f(x1) ≥ f(x2) ⇒ f(λx1 + (1− λ)x2) > f(x2)

for every 0 ≤ λ ≤ 1. Similarly, the condition for a strictly quasiconcave

function can be written as

f(x1) ≥ f(x2) ⇒ f(λx1 + (1− λ)x2) > f(x2)

for every x1 6= x2 and 0 < λ < 1.

2Currently there are several competing definitions of strict quasiconcavity. This one is

the one most commonly used in economics.
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8 Constrained Optimization

9 Introduction to nonlinear programming

The solution of a nonlinear programming problem consists of finding an opti-

mal solution vector x∗. Recognizing an optimal x∗ and studying its properties

form the central theme of this part of the course.

We shall see that if a vector a candidate for an optimal solution, it must

satisfy certain necessary conditions of optimality. There may however

be vectors other than the optimal ones that also satisfy these conditions.

Hence, necessary conditions are primarily useful in the negative sense: if a

vector x does not satisfy them, it cannot be an optimal solution. To verify

optimality, we may, therefore, look for sufficient conditions of optimality

that, if satisfied together with the necessary ones, give a clear indication of

the nature of particular solution vector under consideration.

10 First-order necessary conditions for inequal-

ity constrained extrema

We begin by stating the most general mathematical program to be discussed

in this section:

max f(x) (1)

subject to constraints

gi(x) = 0 i = 1, ..., k

hj(x) ≤ 0 j = 1, ...,m
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The functions f, g1, ..., gk, h1, ..., hm are assumed to be defined and differen-

tiable on some open set B ⊆ Rn. Let X ⊆ B denote the feasible set for

problem (1). If the feasible set is nonempty, the program is called a consis-

tent program.

Definition 45 A vector z 6= 0 is called a feasible direction vector from

x∗ if there exists a number δ > 0 such that (x∗ + αz) ∈ X
⋂

Nδ(x
∗)for all

0 ≤ α ≤ δ/ ‖z‖ .

Let us characterize the feasible direction vectors in terms of the constraint

functions gi and hj. Define

I(x∗) = {i : hi(x
∗) = 0}

Define furthermore

Z(x∗) = {z : z∇gj(x
∗) = 0, j ∈ 1, ...k, z∇hj(x

∗) ≤ 0, i ∈ I(x∗).

We can show that for z to be a feasible direction vector from x∗, then z ∈
Z(x∗). Note that the set Z(x∗) is a cone. It is also called the linearizing cone

of X at x∗, since it is generated by linearizing the constraint functions at

x∗. We will say that for any x for which Z (x) 6= {0}, the Kuhn-Tucker

constraint qualification (KTQC) is satisfied.3 We can now state the

main result of this section, which is a direct extension of the Kuhn-Tucker

necessary conditions.

Theorem 46 (Generalized Kuhn-Tucker necessary conditions)

Let x∗ be a solution of problem (1) and suppose that x∗ satisfies the KTCQ.

Then there exist vectors λ∗ = (λ∗
1, ..., λ

∗
m) and µ∗ = (µ∗

1, ..., µ
∗
p) such that

∇xL(x∗, λ∗, µ∗) ≡ ∇f(x∗)−
k∑

i=1

λ∗
i∇gi(x

∗)−
m∑

j=1

µ∗
j∇hj(x

∗) = 0,

3The condition mentioned here is not the original Kuhn-Tucker constraint qualifica-

tion since the original covered only inequality constraints, here we are covering mixed

constraints, i.e. inequality as well as equality constraints.
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and

µ∗
jhj(x

∗) = 0, i = 1, ...,m, µ∗ ≥ 0.

No specific assumptions, except differentiability, were made so far on the

type of functions involved in (1). Further assumptions on these functions

lead to special forms of the Kuhn-Tucker conditions. We present one special

case. In many applications (e.g. general equilibrium theory), the variables xj

are required to be nonnegative. Suppose that in addition to the constraints

incorporated in gi and hj, we also require

x ≥ 0 (2)

The necessary conditions for this case can be stated as follows:

Theorem 47 (Generalized Kuhn-Tucker nec. conditions with non-

negativity constraints)

Let x∗ be a solution of problem (1) and the added constraint (2). Suppose

that x∗ satisfies the KTCQ. Then there exist vectors λ∗ = (λ∗
1, ..., λ

∗
k) and

µ∗ = (µ∗
1, ..., µ

∗
m) such that

∇xL(x∗, λ∗, µ∗) ≡ ∇f(x∗)−
k∑

i=1

λ∗
i∇gi(x

∗)−
m∑

j=1

µ∗
j∇hj (x∗) ≤ 0,

µ∗
jhj(x

∗) = 0, µ∗ ≥ 0,

and

(x∗)

[
∇f (x∗)−

k∑
i=1

λ∗
i∇gi(x

∗)−
m∑

j=1

µ∗
j∇hj (x∗)

]
= 0.

11 Concave programming

Here we consider concave programs, a special case of the general nonlinear

program (1). The optimality conditions derived there become simpler for
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concave programs. Consider, then, the following nonlinear program, called a

concave program.

max f(x) (P)

subject to the constraints

gi(x) = 0 i = 1, ..., k.

hj(x) ≤ 0 j = l, ..., m.

The functions f, g1, ..., gk, h1, ..., hm are assumed to be defined and differen-

tiable on some open set B ⊆ Rn, where f is a concave function on IRn, the

hj are quasiconvex functions and the hj are affine functions of the form

gi(x) =
n∑

k=1

aikxk − bi.

Note that the feasible set X for problem (P ) is convex since the set of all

x ∈ Rn satisfying the inequalities and the equations is a convex set. Note

that generally the set of x ∈ Rn satisfying an equation of h(x) = 0, where

h is a nonlinear convex or concave function, is not a convex set. We shall

now show that the Kuhn-Tucker necessary conditions for optimality are also

sufficient when applied to a concave program.

Theorem 48 (Kuhn-Tucker sufficient conditions for optimality)

Suppose that the functions f and g1, ..., gk are real-valued, concave and qua-

siconvex functions on Rn, respectively, and let h1, ..., hm be linear. If there

exist vectors x∗, λ∗, µ∗, with x∗, λ∗, µ∗, with x∗ ∈ X and

∇xL(x∗, λ∗, µ∗) ≡ ∇f(x∗)−
k∑

i=1

λ∗
i∇gi(x

∗)−
m∑

j=1

µ∗
j∇hj (x∗) = 0

µ∗
jhj(x

∗) = 0 i = 1, ...,m µ∗ ≥ 0

then x∗ is a global optimum of (P ).
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The Kuhn-Tucker constraint qualification assumed in the necessary condi-

tions for optimality in the general case can be replaced in convex programs

by a simpler and easier computable, although stronger condition. Suppose all

the constraint are inequality constraints. Then if there exists a point x̂ ∈ C

such that

hj(x̂) < 0 j = 1, ...,m

then the program is called strongly consistent. The strong consistency con-

dition is also known as Slater’s constraint qualification.

12 Interpretation of the Multipliers

12.1 Envelope Theorem

Let x(b) solve the equality constrained programming problem:

max f(x, b)

s.t. g (x, b) = 0

where f, g are C1 functions f, g : Rn+k → Rm.

Define the value function to the problem to be the function v : Rk → R
defined by v (b) = f (x (b) , b) . An application of the chain rule to v (b) =

f (h (b)) where h(b) = (x (b) , b) yields the following expressions for the partial

derivatives of v :

∂v

∂bi

=
n∑

j=1

∂f

∂xj

· ∂xj

∂bi

+
∂f

∂bi

. (3)

From the first order conditions for x (b) we know that:
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∂f (x (b) , b)

∂xj

=
m∑

k=i

λk
∂gk (x (b) , b)

∂xj

. (4)

Since x (b) is feasible for all b,

n∑
j=1

∂gk (x (b) , b)

∂xj

· ∂xj

∂bi

= −∂gk (x (b) , b)

∂bi

. (5)

Combining?? we get:

∂v

∂bi

=
n∑

j=1

m∑
k=i

λk
∂gk (x (b) , b)

∂xj

∂xj

∂bi

+
∂f

∂bi

.

Interchanging the order of summation and using 5, we get:

Theorem 49 (The Envelope Theorem)

∂v (x (b) , b)

∂bi

=
m∑

k=1

−λk
∂gk (x (b) , b)

∂bi

+
∂f

∂bi

.

Remark 50 In words, the theorem tells that only direct effects on the con-

straints and the objective function from the change in a parameter produce

first order changes in the value function.

Envelope theorem allows us to interpret the multipliers of the problem in

an economically meaningful way:

Suppose that the maximization problem is of the following special form:

max f(x)

s.t. gk (x) = bk for k = 1, ...,m.

Then an application of the envelope theorem yields:
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∂v (x (b) , b)

∂bi

= λk.

In words, the multiplier equals the marginal addition to the value function

as one of the constraints is relaxed. If we take each constraint to represent

the amount of a scarce resource that the decision maker has available to

him, λk has a natural interpretation as a shadow price of resource k. If the

decision maker was facing an unconstrained optimization problem, where he

could choose both the resources and the optimal x′s, then at prices λk for

the resources, his optimal choice would coincide with his optimal choice in

the original constrained problem.
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